ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Localization for Multi-camera Association

86   0   0.0 ( 0 )
 نشر من قبل Zhongang Cai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present McAssoc, a deep learning approach to the as-sociation of detection bounding boxes in different views ofa multi-camera system. The vast majority of the academiahas been developing single-camera computer vision algo-rithms, however, little research attention has been directedto incorporating them into a multi-camera system. In thispaper, we designed a 3-branch architecture that leveragesdirect association and additional cross localization infor-mation. A new metric, image-pair association accuracy(IPAA) is designed specifically for performance evaluationof cross-camera detection association. We show in the ex-periments that localization information is critical to suc-cessful cross-camera association, especially when similar-looking objects are present. This paper is an experimentalwork prior to MessyTable, which is a large-scale bench-mark for instance association in mutliple cameras.

قيم البحث

اقرأ أيضاً

While radar and video data can be readily fused at the detection level, fusing them at the pixel level is potentially more beneficial. This is also more challenging in part due to the sparsity of radar, but also because automotive radar beams are muc h wider than a typical pixel combined with a large baseline between camera and radar, which results in poor association between radar pixels and color pixel. A consequence is that depth completion methods designed for LiDAR and video fare poorly for radar and video. Here we propose a radar-to-pixel association stage which learns a mapping from radar returns to pixels. This mapping also serves to densify radar returns. Using this as a first stage, followed by a more traditional depth completion method, we are able to achieve image-guided depth completion with radar and video. We demonstrate performance superior to camera and radar alone on the nuScenes dataset. Our source code is available at https://github.com/longyunf/rc-pda.
RANSAC is an important algorithm in robust optimization and a central building block for many computer vision applications. In recent years, traditionally hand-crafted pipelines have been replaced by deep learning pipelines, which can be trained in a n end-to-end fashion. However, RANSAC has so far not been used as part of such deep learning pipelines, because its hypothesis selection procedure is non-differentiable. In this work, we present two different ways to overcome this limitation. The most promising approach is inspired by reinforcement learning, namely to replace the deterministic hypothesis selection by a probabilistic selection for which we can derive the expected loss w.r.t. to all learnable parameters. We call this approach DSAC, the differentiable counterpart of RANSAC. We apply DSAC to the problem of camera localization, where deep learning has so far failed to improve on traditional approaches. We demonstrate that by directly minimizing the expected loss of the output camera poses, robustly estimated by RANSAC, we achieve an increase in accuracy. In the future, any deep learning pipeline can use DSAC as a robust optimization component.
Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to findi ng correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.
We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical , stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: $href{https://caizhongang.github.io/projects/MessyTable/}{text{MessyTable}}$
Deep learning has achieved impressive results in camera localization, but current single-image techniques typically suffer from a lack of robustness, leading to large outliers. To some extent, this has been tackled by sequential (multi-images) or geo metry constraint approaches, which can learn to reject dynamic objects and illumination conditions to achieve better performance. In this work, we show that attention can be used to force the network to focus on more geometrically robust objects and features, achieving state-of-the-art performance in common benchmark, even if using only a single image as input. Extensive experimental evidence is provided through public indoor and outdoor datasets. Through visualization of the saliency maps, we demonstrate how the network learns to reject dynamic objects, yielding superior global camera pose regression performance. The source code is avaliable at https://github.com/BingCS/AtLoc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا