ترغب بنشر مسار تعليمي؟ اضغط هنا

Overview of KAGRA : KAGRA science

214   0   0.0 ( 0 )
 نشر من قبل Atsushi Nishizawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

KAGRA is a newly build gravitational-wave observatory, a laser interferometer with 3 km arm length, located in Kamioka, Gifu, Japan. In this paper in the series of KAGRA-featured articles, we discuss the science targets of KAGRA projects, considering not only the baseline KAGRA (current design) but also its future upgrade candidates (KAGRA+) for the near to middle term (~5 years).

قيم البحث

اقرأ أيضاً

111 - T.Akutsu , M.Ando , K.Arai 2020
KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu, Japan. In this series of articles, we present an overview of the baseline KAGRA, for which we finished installing the desi gned configuration in 2019. This article describes the method of calibration (CAL) used for reconstructing gravitational wave signals from the detector outputs, as well as the characterization of the detector (DET). We also review the physical environmental monitors (PEM) system and the geophysics interferometer (GIF). Both are used for characterizing and evaluating the data quality of the gravitational wave channel. They play important roles in utilizing the detector output for gravitational wave searches. These characterization investigations will be even more important in the near future, once gravitational wave detection has been achieved, and in using KAGRA in the gravitational wave astronomy era.
168 - T. Akutsu , M. Ando , K. Arai 2018
The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordi nated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an L, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRAs design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRAs first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate.
115 - T.Akutsu , M.Ando , S.Araki 2017
Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is named {it iKAGRA}. In this paper, we summarize the construction of KAGRA, including the study of the advantages and challenges of building an underground detector and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
203 - T.Akutsu , M.Ando , K.Arai 2020
KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducin g the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA finished all installations with the designed configuration, which we call the baseline KAGRA. In this occasion, we present an overview of the baseline KAGRA from various viewpoints in a series of of articles. In this article, we introduce the design configurations of KAGRA with its historical background.
KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogeni c cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial phase operation of the interferometer with a simple 3-km Michelson configuration have been completed. The first cryogenic operation is expected in 2018, and the observing runs with a full interferometer are expected in 2020s. The basic interferometer configuration and the current status of KAGRA are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا