ترغب بنشر مسار تعليمي؟ اضغط هنا

The Supersonic Project: To cool or not to cool Supersonically Induced Gas Objects (SIGOs)?

44   0   0.0 ( 0 )
 نشر من قبل Yeou Chiou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supersonically Induced Gas Objects (SIGOs) primarily form in the early Universe, outside of dark matter halos due to the presence of a relative stream velocity between baryons and dark matter. These structures may be the progenitors of globular clusters. Since SIGOs are made out of pristine gas, we investigate the effect of atomic cooling on their properties. We run a suite of simulations by using the moving-mesh code {sc arepo}, with and without baryon-dark matter relative velocity and with and without the effects of atomic cooling. We show that SIGOs density, temperature, and prolateness are determined by gravitational interactions rather than cooling. The cold gas fraction in SIGOs is much higher than that of dark matter halos. Specifically, we show that the SIGOs characteristic low temperature and extreme high gas density forges a nurturing ground for the earliest star formation sites.

قيم البحث

اقرأ أيضاً

Supersonically Induced Gas Objects (SIGOs), are structures with little to no dark matter component predicted to exist in regions of the Universe with large relative velocities between baryons and dark matter at the time of recombination. They have be en suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc), where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities. As a proof-of-concept, and because globular clusters were proposed to be natural formation sites for gravitational wave sources from binary black hole (BBH) mergers, we show that SIGOs should imprint an anisotropy on the gravitational wave signal on the sky, consistent with SIGOs distribution.
The physical properties of almost any kind of astronomical object can be derived by fitting synthetic spectra or photometry extracted from theoretical models to observational data. This process usually involves working with multiwavelength data, whic h is one of the cornerstones of the VO philosophy. From this kind of studies, when combining with theoretical isochrones one can even estimate ages. We present here the results obtained from a code designed to perform chi^2 tests to both spectroscopic models (or the associated synthetic photometry) and combinations of blackbodies (including modified blackbodies). Some steps in this process can already be done in a VO environment, and the rest are in the process of development. We must note that this kind of studies in star forming regions, clusters, etc. produce a huge amount of data, very tedious to analyze using the traditional methodology. This make them excellent examples where to apply the VO capabilities.
We use the NewHorizon simulation to study the redshift evolution of bar properties and fractions within galaxies in the stellar masses range $M_{star} = 10^{7.25} - 10^{11.4} rm{M}_{odot}$ over the redshift range $z = 0.25 - 1.3$. We select disc gal axies using stellar kinematics as a proxy for galaxy morphology. We employ two different automated bar detection methods, coupled with visual inspection, resulting in observable bar fractions of $f_{rm bar} = 0.070_{{-0.012}}^{{+0.018}}$ at $zsim$ 1.3, decreasing to $f_{rm bar} = 0.011_{{-0.003}}^{{+0.014}}$ at $zsim$ 0.25. Only one galaxy is visually confirmed as strongly barred in our sample. This bar is hosted by the most massive disk and only survives from $z=1.3$ down to $z=0.7$. Such a low bar fraction, in particular amongst Milky Way-like progenitors, highlights a missing bars problem, shared by literally all cosmological simulations with spatial resolution $<$100 pc to date. The analysis of linear growth rates, rotation curves and derived summary statistics of the stellar, gas and dark matter components suggest that galaxies with stellar masses below $10^{9.5}-10^{10} rm{M}_{odot}$ in NewHorizon appear to be too dominated by dark matter to bar, while more massive galaxies typically have formed large bulges that prevent bar persistence at low redshift. This investigation confirms that the evolution of the bar fraction puts stringent constraints on the assembly history of baryons and dark matter onto galaxies.
We consider the effects of radio-wave scattering by cool ionized clumps ($Tsim 10^4,$K) in circumgalactic media (CGM). The existence of such clumps are inferred from intervening quasar absorption systems, but have long been something of a theoretical mystery. We consider the implications for compact radio sources of the `fog-like two-phase model of the circumgalactic medium recently proposed by McCourt et al.(2018). In this model, the CGM consists of a diffuse coronal gas ($Tgtrsim 10^6,$K) in pressure equilibrium with numerous $lesssim 1,$pc scale cool clumps or `cloudlets formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected to exceed unity in $gtrsim 10^{11.5} M_odot$ haloes, and the ensuing radio-wave scattering is akin to that caused by turbulence in the Galactic warm ionized medium (WIM). If $30,$per-cent of cosmic baryons are in the CGM, we show that for a cool-gas volume fraction of $f_{rm v}sim 10^{-3}$, sources at $z_{rm s}sim 1$ suffer angular broadening by $sim 15,mu$as and temporal broadening by $sim 1,$ms at $lambda = 30,$cm, due to scattering by the clumps in intervening CGM. The former prediction will be difficult to test (the angular broadening will suppress Galactic scintillation only for $<10,mu$Jy compact synchrotron sources). However the latter prediction, of temporal broadening of localized fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as function of halo mass and redshift, and thus provides a test of the model proposed by McCourt et al.(2018).
X-ray astronomers often divide galaxy clusters into two classes: cool core (CC) and non-cool core (NCC) objects. The origin of this dichotomy has been the subject of debate in recent years, between evolutionary models (where clusters can evolve from CC to NCC, mainly through mergers) and primordial models (where the state of the cluster is fixed ab initio by early mergers or pre-heating). We found that in a well-defined sample (clusters in the GMRT Radio halo survey with available Chandra or XMM-Newton data), none of the objects hosting a giant radio halo can be classified as a cool core. This result suggests that the main mechanisms which can start a large scale synchrotron emission (most likely mergers) are the same that can destroy CC and therefore strongly supports evolutionary models of the CC-NCC dichotomy. Moreover combining the number of objects in the CC and NCC state with the number of objects with and without a radio-halo, we estimated that the time scale over which a NCC cluster relaxes to the CC state, should be larger than the typical life-time of radio-halos and likely shorter than about 3 Gyr. This suggests that NCC transform into CC more rapidly than predicted from the cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of a cyclical evolution between the CC and NCC states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا