ﻻ يوجد ملخص باللغة العربية
We study the constraints on $tto u$ flavor changing neutral Higgs (FCNH) coupling, and how it may be explored further at the Large Hadron Collider (LHC). In the general two Higgs doublet model, such transitions can be induced by a nonzero $rho_{tu}$ Yukawa coupling. We show that such couplings can be constrained by existing searches at the LHC for $m_H$, $m_A$ and, $m_{H^+}$ in the sub-TeV range, where $H$, $A$ and $H^+$ are the exotic $CP$-even, $CP$-odd and charged scalars. We find that a dedicated $ugto t H/tA to t t bar u$ search can probe the available parameter space of $rho_{tu}$ down to a few percent level for $200,mbox{GeV} lesssim m_H,,m_A lesssim 600$ GeV, with discovery possible at high luminosity. Effects of how other extra top Yukawa couplings, such as $rho_{tc}$ and $rho_{tt}$, dilute the sensitivity of the $rho_{tu}$ probe are discussed.
We investigate the prospects for discovering a top quark decaying into one light Higgs boson along with a charm quark in top quark pair production at the CERN Large Hadron Collider (LHC). A general two Higgs doublet model is adopted to study the sign
A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay $phi^0 to tbar{c}+bar{t}c$, where $phi^0$ could be a CP-even scalar ($H^0$) or a CP-odd pseudoscalar ($A^0$). Measurement of the
Despite the discovery of the Higgs boson decay in five separate channels many parameters of the Higgs boson remain largely unconstrained. In this paper, we present a new approach to constraining the Higgs total width by requiring the Higgs to be reso
The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixin
We investigate the prospects of discovering the top quark decay into a charm quark and a Higgs boson ($t to c h^0$) in top quark pair production at the CERN Large Hadron Collider (LHC). A general two Higgs doublet model is adopted to study flavor cha