ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral-change enhancement with prior SNR for the hearing impaired

63   0   0.0 ( 0 )
 نشر من قبل Xiang Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A previous signal processing algorithm that aimed to enhance spectral changes (SCE) over time showed benefit for hearing-impaired (HI) listeners to recognize speech in background noise. In this work, the previous SCE was manipulated to perform on target-dominant segments, rather than treating all frames equally. Instantaneous signal-to-noise ratios (SNRs) were calculated to determine whether the segments should be processed. Initially, the ideal SNR calculated by the knowledge of premixed signals was introduced to the previous SCE algorithm (SCE-iSNR). Speech intelligibility (SI) and clarity preference were measured for 12 HI listeners in steady speech-spectrum noise (SSN) and six-talk speech (STS) maskers, respectively. The results showed the SCE-iSNR algorithm improved SI significantly for both maskers at high signal-to-masker ratios (SMRs) and for STS masker at low SMRs, while processing effect on speech quality was small. Secondly, the estimated SNR obtained from real mixtures was used, resulting in another SCE-eSNR. SI and subjective rating on naturalness and speech quality were tested for 7 HI subjects. The SCE-eSNR algorithm showed improved SI for SSN masker at high SMRs and for STS masker at low SMRs, as well as better naturalness and speech quality for STS masker. The limitations of applying the algorithms are discussed.



قيم البحث

اقرأ أيضاً

Deep complex convolution recurrent network (DCCRN), which extends CRN with complex structure, has achieved superior performance in MOS evaluation in Interspeech 2020 deep noise suppression challenge (DNS2020). This paper further extends DCCRN with th e following significant revisions. We first extend the model to sub-band processing where the bands are split and merged by learnable neural network filters instead of engineered FIR filters, leading to a faster noise suppressor trained in an end-to-end manner. Then the LSTM is further substituted with a complex TF-LSTM to better model temporal dependencies along both time and frequency axes. Moreover, instead of simply concatenating the output of each encoder layer to the input of the corresponding decoder layer, we use convolution blocks to first aggregate essential information from the encoder output before feeding it to the decoder layers. We specifically formulate the decoder with an extra a priori SNR estimation module to maintain good speech quality while removing noise. Finally a post-processing module is adopted to further suppress the unnatural residual noise. The new model, named DCCRN+, has surpassed the original DCCRN as well as several competitive models in terms of PESQ and DNSMOS, and has achieved superior performance in the new Interspeech 2021 DNS challenge
We describe Parrotron, an end-to-end-trained speech-to-speech conversion model that maps an input spectrogram directly to another spectrogram, without utilizing any intermediate discrete representation. The network is composed of an encoder, spectrog ram and phoneme decoders, followed by a vocoder to synthesize a time-domain waveform. We demonstrate that this model can be trained to normalize speech from any speaker regardless of accent, prosody, and background noise, into the voice of a single canonical target speaker with a fixed accent and consistent articulation and prosody. We further show that this normalization model can be adapted to normalize highly atypical speech from a deaf speaker, resulting in significant improvements in intelligibility and naturalness, measured via a speech recognizer and listening tests. Finally, demonstrating the utility of this model on other speech tasks, we show that the same model architecture can be trained to perform a speech separation task
Modern speech enhancement algorithms achieve remarkable noise suppression by means of large recurrent neural networks (RNNs). However, large RNNs limit practical deployment in hearing aid hardware (HW) form-factors, which are battery powered and run on resource-constrained microcontroller units (MCUs) with limited memory capacity and compute capability. In this work, we use model compression techniques to bridge this gap. We define the constraints imposed on the RNN by the HW and describe a method to satisfy them. Although model compression techniques are an active area of research, we are the first to demonstrate their efficacy for RNN speech enhancement, using pruning and integer quantization of weights/activations. We also demonstrate state update skipping, which reduces the computational load. Finally, we conduct a perceptual evaluation of the compressed models to verify audio quality on human raters. Results show a reduction in model size and operations of 11.9$times$ and 2.9$times$, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR. Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351$times$ better than previous work.
Supervised learning for single-channel speech enhancement requires carefully labeled training examples where the noisy mixture is input into the network and the network is trained to produce an output close to the ideal target. To relax the condition s on the training data, we consider the task of training speech enhancement networks in a self-supervised manner. We first use a limited training set of clean speech sounds and learn a latent representation by autoencoding on their magnitude spectrograms. We then autoencode on speech mixtures recorded in noisy environments and train the resulting autoencoder to share a latent representation with the clean examples. We show that using this training schema, we can now map noisy speech to its clean version using a network that is autonomously trainable without requiring labeled training examples or human intervention.
114 - Wei Xue , Gang Quan , Chao Zhang 2020
Statistical signal processing based speech enhancement methods adopt expert knowledge to design the statistical models and linear filters, which is complementary to the deep neural network (DNN) based methods which are data-driven. In this paper, by using expert knowledge from statistical signal processing for network design and optimization, we extend the conventional Kalman filtering (KF) to the supervised learning scheme, and propose the neural Kalman filtering (NKF) for speech enhancement. Two intermediate clean speech estimates are first produced from recurrent neural networks (RNN) and linear Wiener filtering (WF) separately and are then linearly combined by a learned NKF gain to yield the NKF output. Supervised joint training is applied to NKF to learn to automatically trade-off between the instantaneous linear estimation made by the WF and the long-term non-linear estimation made by the RNN. The NKF method can be seen as using expert knowledge from WF to regularize the RNN estimations to improve its generalization ability to the noise conditions unseen in the training. Experiments in different noisy conditions show that the proposed method outperforms the baseline methods both in terms of objective evaluation metrics and automatic speech recognition (ASR) word error rates (WERs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا