ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrability and braided tensor categories

211   0   0.0 ( 0 )
 نشر من قبل Paul Fendley
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Fendley




اسأل ChatGPT حول البحث

Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from discrete holomorphicity. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of Baxterising, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.



قيم البحث

اقرأ أيضاً

By introducing the concepts of asymptopia and bi-asymptopia, we show how braided tensor C*-categories arise in a natural way. This generalizes constructions in algebraic quantum field theory by replacing local commutativity by suitable forms of asymptotic Abelianness.
We classify finite pointed braided tensor categories admitting a fiber functor in terms of bilinear forms on symmetric Yetter-Drinfeld modules over abelian groups. We describe the groupoid formed by braided equivalences of such categories in terms of certain metric data, generalizing the well-known result of Joyal and Street for fusion categories. We study symmetric centers and ribbon structures of pointed braided tensor categories and examine their Drinfeld centers.
152 - Zhimin Liu , Shenglin Zhu 2021
Let $mathcal{C}$ be a finite braided multitensor category. Let $B$ be Majids automorphism braided group of $mathcal{C}$, then $B$ is a cocommutative Hopf algebra in $mathcal{C}$. We show that the center of $mathcal{C}$ is isomorphic to the category o f left $B$-comodules in $mathcal{C}$, and the decomposition of $B$ into a direct sum of indecomposable $mathcal{C}$-subcoalgebras leads to a decomposition of $B$-$operatorname*{Comod}_{mathcal{C}}$ into a direct sum of indecomposable $mathcal{C}$-module subcategories. As an application, we present an explicit characterization of the structure of irreducible Yetter-Drinfeld modules over semisimple quasi-triangular weak Hopf algebras. Our results generalize those results on finite groups and on quasi-triangular Hopf algebras.
We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal $2$-functors from $A$ to the braided $2$-categorical Picard group of $cal B$ (consisting of invertible central $cal B$-module categories). Such functors can be expressed in terms of the Eilnberg-Mac~Lane cohomology. We describe in detail braided $2$-categorical Picard groups of symmetric fusion categories and of pointed braided fusion categories.
We develop a method for generating the complete set of basic data under the torsorial actions of $H^2_{[rho]}(G,mathcal{A})$ and $H^3(G,U(1))$ on a $G$-crossed braided tensor category $mathcal{C}_G^times$, where $mathcal{A}$ is the set of invertible simple objects in the braided tensor category $mathcal{C}$. When $mathcal{C}$ is a modular tensor category, the $H^2_{[rho]}(G,mathcal{A})$ and $H^3(G,U(1))$ torsorial action gives a complete generation of possible $G$-crossed extensions, and hence provides a classification. This torsorial classification can be (partially) collapsed by relabeling equivalences that appear when computing the set of $G$-crossed braided extensions of $mathcal{C}$. The torsor method presented here reduces these redundancies by systematizing relabelings by $mathcal{A}$-valued $1$-cochains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا