ﻻ يوجد ملخص باللغة العربية
The classical Einstein-Hilbert (EH) action for general relativity (GR) is shown to be formally analogous to the classical system with position-dependent mass (PDM) models. The analogy is developed and used to build the covariant classical Hamiltonian as well as defining an alternative phase portrait for GR. The set of associated Hamiltons equations in the phase space is presented as a first-order system dual to the Einstein field equations. Following the principles of quantum mechanics, I build a canonical theory for the classical general. A fully consistent quantum Hamiltonian for GR is constructed based on adopting a high dimensional phase space. It is observed that the functional wave equation is timeless. As a direct application, I present an alternative wave equation for quantum cosmology. In comparison to the standard Arnowitt-Deser-Misner(ADM) decomposition and quantum gravity proposals, I extended my analysis beyond the covariant regime when the metric is decomposed into the $3+1$ dimensional ADM decomposition. I showed that an equal dimensional phase space can be obtained if one applies ADM decomposed metric.
An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial ge
A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation rel
In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [1]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covari
We describe spacelike and timelike (causally connected) events on an equal footing by utilizing detectors coupled to timers that store information about a given system and the moment of measurement. By tracing out the system and focusing on the detec
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction.