ﻻ يوجد ملخص باللغة العربية
The tetragonal Mo$_5$PB$_2$ compound was recently reported to show superconductivity with a critical temperature up to 9.2 K. In search of evidence for multiple superconducting gaps in Mo$_5$PB$_2$, comprehensive measurements, including magnetic susceptibility, electrical resistivity, heat capacity, and muon-spin rotation and relaxation ($mu$SR) measurements were carried out. Data from both low-temperature superfluid density and electronic specific heat suggest a nodeless superconducting ground state in Mo$_5$PB$_2$. Two superconducting energy gaps $Delta_0$ = 1.02 meV (25%) and 1.49 meV (75%) are required to describe the low-$T$ electronic specific-heat data. The multigap features are clearly evidenced by the field dependence of the electronic specific-heat coefficient and the Gaussian relaxation rate in the superconducting state (i.e., superfluid density), as well as by the temperature dependence of the upper critical field. By combining our extensive experimental results with numerical band-structure calculations, we provide compelling evidence of multigap superconductivity in Mo$_5$PB$_2$.
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature
Layered van der Waals (vdW) materials are emerging as one of the most versatile directions in the field of quantum condensed matter physics. They allow an unprecedented control of electronic properties via stacking of different types of two-dimension
The noncentrosymmetric superconductor Mo$_3$Rh$_2$N, with $T_c = 4.6$ K, adopts a $beta$-Mn-type structure (space group $P$4$_1$32), similar to that of Mo$_3$Al$_2$C. Its bulk superconductivity was characterized by magnetization and heat-capacity mea
The recently discovered kagome superconductor CsV$_3$Sb$_5$ ($T_c simeq 2.5$ K) has been found to host charge order as well as a non-trivial band topology, encompassing multiple Dirac points and probable surface states. Such a complex and phenomenolo
We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductorUCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H//b linear at low magnetic field a