ترغب بنشر مسار تعليمي؟ اضغط هنا

GIARPS High-resolution Observations of T Tauri stars (GHOsT). II. Connecting atomic and molecular winds in protoplanetary disks

81   0   0.0 ( 0 )
 نشر من قبل Manuele Gangi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of the GIARPS High-resolution Observations of T Tauri stars (GHOsT) project, we aim to characterize the atomic and molecular winds in a sample of classical T Tauri stars (CTTs) of the Taurus-Auriga region. We analyzed the flux calibrated [OI] 630 nm and $rm H_2$ 2.12 $rm mu m$ lines in a sample of 36 CTTs observed at the Telescopio Nazionale Galileo with the HARPS and GIANO spectrographs. We decomposed the line profiles into different kinematic Gaussian components and focused on the most frequently detected component, the narrow low-velocity (v$rm_p < 20$ $rm km$ $rm s^{-1}$) component (NLVC). We found that the $rm H_2$ line is detected in 17 sources ($sim 50 %$ detection rate), and [OI] is detected in all sources but one. The NLV components of the $rm H_2$ and [OI] emission are kinematically linked, with a strong correlation between the peak velocities and the full widths at half maximum of the two lines. Assuming Keplerian broadening, we found that the [OI] NVLC originates from a disk region between 0.05 and 20 au and that of $rm H_2$ in a region from 2 and 20 au. We did not find any clear correlation between v$rm_p$ of the $rm H_2$ and [OI] NVLC and the outer disk inclination. This result is in line with previous studies. Our results suggest that molecular and neutral atomic emission in disk winds originate from regions that might overlap, and that the survival of molecular winds in disks strongly depends on the gas exposure to the radiation from the central star. Our results demonstrate the potential of wide-band high-resolution spectroscopy in linking tracers of different manifestations of the same phenomenon.



قيم البحث

اقرأ أيضاً

The mechanism for jet formation in the disks of T Tauri stars is poorly understood. Observational benchmarks to launching models can be provided by tracing the physical properties of the kinematic components of the wind and jet in the inner 100 au of the disk surface. In the framework of the GHOsT (GIARPS High-resolution Observations of T Tauri stars) project, we aim to perform a multi-line analysis of the velocity components of the gas in the jet acceleration zone. We analyzed the GIARPS-TNG spectra of six objects in the Taurus-Auriga complex (RY Tau, DG Tau, DL Tau, HN Tau, DO Tau, RW Aur A). Thanks to the combined high-spectral resolution (R=50000-115000) and wide spectral coverage (~400-2400 nm) we observed several O, S+, N, N+, and Fe+ forbidden lines spanning a large range of excitation and ionization conditions. In four objects (DG Tau, HN Tau, DO Tau, RW Aur A), temperature (T_e), electron and total density (n_e, n_H), and fractional ionization (x_e) were derived as a function of velocity through an excitation and ionization model. The abundance of gaseous iron, X(Fe), a probe of the dust content in the jet, was derived in selected velocity channels. The physical parameters vary smoothly with velocity, suggesting a common origin for the different kinematic components. In DG Tau and HN Tau, T_e, x_e, and X(Fe) increase with velocity (roughly from 6000 K, 0.05, 10% X(Fe)_sun to 15000 K, 0.6, 90% X(Fe)_sun). This trend is in agreement with disk-wind models in which the jet is launched from regions of the disk at different radii. In DO Tau and RW Aur A, we infer x_e < 0.1, n_H ~10^6-7 cm^-3, and X(Fe) <~ X(Fe)_sun at all velocities. These findings are tentatively explained by the formation of these jets from dense regions inside the inner, gaseous disk, or as a consequence of their high degree of collimation.
502 - J.M. Alcala , M. Gangi , K. Biazzo 2021
The mass-accretion rate, Macc, is a crucial parameter for the study of the evolution of accretion disks around young low-mass stellar objects (YSOs) and for planet formation studies. The Taurus star forming region (SFR) is rich in pre-main sequence ( PMS) stars, most of them of the T Tauri class. A variety of methodologies have been used in the past to measure mass accretion in samples of YSOs in Taurus, but despite being a general benchmark for star formation studies, a comprehensive and systematic analysis of the Taurus T Tauri population, where the stellar and accretion properties are derived homogeneously and simultaneously, is still missing. As part of the GIARPS High-resolution Observations of T Tauri stars (GHOsT) project, here we present a pilot study of the stellar and accretion properties of seven YSOs in Taurus using the spectrograph GIARPS at the Telescopio Nazionale Galileo (TNG). Contemporaneous low-resolution spectroscopic and photometric ancillary observations allow us to perform an accurate flux calibration of the high-resolution spectra. The simultaneity of the high-resolution, wide-band spectroscopic observations, from the optical to the near-infrared (NIR), the veiling measurements in such wide spectral range, and many well-calibrated emission line diagnostics allows us to derive the stellar and accretion properties of the seven YSOs in a homogeneous and self-consistent way. The procedures and methodologies presented here will be adopted in future works for the analysis of the complete GHOsT data set. We discuss the accretion properties of the seven YSOs in comparison with the 90% complete sample of YSOs in the Lupus SFR and investigate possibilities for the origin of the continuum excess emission in the NIR. }
223 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12 } to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, < 40 km/s) and a high velocity component (HVC, > 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.
116 - Gergely Csepany 2017
Context. In multiple pre-main-sequence systems the lifetime of circumstellar disks appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims. We report high spatial res olution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine if the components are gravitationally bound and orbital motion is visible, derive orbital parameters and investigate possible correlations between the binary parameters and disk states. Methods. We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding $16 + 2times2=20$ binary pairs) in the Taurus-Auriga star forming region from the survey by Leinert et al. (1993), with spectral types from K1 to M5 and separations from 0.22 (31 AU) to 5.8 (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results. We found ten pairs to orbit each other, five pairs that may show orbital motion and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 $mu$m infra-red excess varies between 0.1 and 7.2 magnitudes (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disk. Conclusions. We have detected orbital motion in young T Tauri systems over a timescale of $approx20$ years. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا