ترغب بنشر مسار تعليمي؟ اضغط هنا

Eliminating the Electric Field Response in a Perovskite Heterojunction Solar Cell to Improve Operational Stability

107   0   0.0 ( 0 )
 نشر من قبل Qingbo Meng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field. We propose a heterojunction route to help suppress ion migration, thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber. A heavily doped p-type (p+) thin layer semiconductor is introduced between the electron transporting layer (ETL) and perovskite absorber. The heterojunction charge depletion and electric field are limited to the ETL and p+ layers, while the perovskite absorber and hole transporting layer remain neutral. The p+ layer has a variety of candidate materials and is tolerant of defect density and carrier mobility, which makes this heterojunction route highly feasible and promising for use in practical applications.

قيم البحث

اقرأ أيضاً

Here we present the experimental results of an inverted three-terminal heterojunction bipolar transistor solar cell (HBTSC) made of GaInP/GaAs. The inverted growth and processing enable contacting the intermediate layer (base) from the bottom, which improves the cell performance by reducing shadow factor and series resistance at the same time. With this prototype we show that an inverted processing of a three-terminal solar cell is feasible and pave the way for the application of epitaxial lift-off, substrate reuse and mechanical stacking to the HBTSC which can eventually lead to a low-cost high-efficiency III-V-on-Si HBTSC technology.
Interpreting the impedance response of perovskite solar cells (PSC) is significantly more challenging than for most other photovoltaics. This is for a variety of reasons, of which the most significant are the mixed ionic-electronic conduction propert ies of metal halide perovskites and the difficulty in fabricating stable, and reproducible, devices. Experimental studies, conducted on a variety of PSCs, produce a variety of impedance spectra shapes. However, they all possess common features, the most noteworthy of which is that they have at least two signals, at high and low frequency, with different characteristic responses to temperature, illumination and electrical bias. It is shown, by a combination of experiment and drift-diffusion modelling of the ion and charge carrier transport and recombination within the cell, that these common features are well reproduced by the simulation. In addition, we show that the high frequency response contains all the key information relating to the steady-state performance of a PSC, i.e. it is a signature of the recombination mechanisms and provides a measure of charge collection efficiency. Moreover, steady-state performance is significantly affected by the distribution of mobile ionic charge within the perovskite layer. Comparison between the electrical properties of different devices should therefore be made using high frequency impedance measurements performed in the steady-state voltage regime in which the cell is expected to operate.
We propose a new triple-junction solar cell structure composed of a III-V heterojunction bipolar transistor solar cell (HBTSC) stacked on top of, and series-connected to, a Si solar cell (III-V-HBTSC-on-Si). The HBTSC is a novel three-terminal device , whose viability has been recently experimentally demonstrated. It has the theoretical efficiency limit of an independently-connected double-junction solar cell. Here, we perform detailed balance efficiency limit calculations under one-sun illumination that show that the absolute efficiency limit of a III-V-HBTSC-on-Si device is the same as for the conventional current-matched III-V-on-Si triple-junction (47% assuming black-body spectrum, 49% with AM1.5G). However, the range of band-gap energies for which the efficiency limit is above 40% is much wider in the III-V-HBTSC-on-Si stack case. From a technological point of view, the lattice-matched GaInP/GaAs combination is particularly interesting, which has an AM1.5G efficiency limit of 47% with the HBTSC-on-Si structure and 39% if the current-matched III-V-on-Si triple junction is considered. Moreover, we show that interconnecting the terminals of the HBTSC to achieve a two-terminal GaInP/GaAs-HBTSC-on-Si device only reduces the efficiency limit by three points, to 43%. As a result, the GaInP/GaAs-HBTSC-on-Si solar cell becomes a promising device for two-terminal, high-efficiency one-sun operation. For it to also be cost-effective, low-cost technologies must be applied to the III-V material growth, such as high-throughput epitaxy or sequential growth.
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the way s in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{mbox{OC}}$) as high as 1.2 V ($V_{mbox{OC}}>e E_{mbox{gap}}^{mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.
Halide perovskites perform remarkably in optoelectronic devices including tandem photovoltaics. However, this exceptional performance is striking given that perovskites exhibit deep charge carrier traps and spatial compositional and structural hetero geneity, all of which should be detrimental to performance. Here, we resolve this long-standing paradox by providing a global visualisation of the nanoscale chemical, structural and optoelectronic landscape in halide perovskite devices, made possible through the development of a new suite of correlative, multimodal microscopy measurements combining quantitative optical spectroscopic techniques and synchrotron nanoprobe measurements. We show that compositional disorder dominates the optoelectronic response, while nanoscale strain variations even of large magnitude (~1 %) have only a weak influence. Nanoscale compositional gradients drive carrier funneling onto local regions associated with low electronic disorder, drawing carrier recombination away from trap clusters associated with electronic disorder and leading to high local photoluminescence quantum efficiency. These measurements reveal a global picture of the competitive nanoscale landscape, which endows enhanced defect tolerance in devices through spatial chemical disorder that outcompetes both electronic and structural disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا