ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying nonequlibrium thermodynamic operations in a multiterminal mesoscopic system

134   0   0.0 ( 0 )
 نشر من قبل Fatemeh Hajiloo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a multiterminal mesoscopic conductor in the quantum Hall regime, subject to temperature and voltage biases. The device can be considered as a nonequilibrium resource acting on a working substance. We previously showed that cooling and power production can occur in the absence of energy and particle currents from a nonequilibrium resource (calling this an N-demon). Here we allow energy or particle currents from the nonequilibrium resource and find that the device seemingly operates at a better efficiency than a Carnot engine. To overcome this problem, we define free-energy efficiencies which incorporate the fact that a nonequilibrium resource is consumed in addition to heat or power. These efficiencies are well behaved for equilibrium and nonequilibrium resources and have an upper bound imposed by the laws of thermodynamics. We optimize power production and cooling in experimentally relevant parameter regimes.

قيم البحث

اقرأ أيضاً

We propose a model of nonequilibrium quantum transport of particles and energy in a system connected to mesoscopic Fermi reservoirs (meso-reservoir). The meso-reservoirs are in turn thermalized to prescribed temperatures and chemical potentials by a simple dissipative mechanism described by the Lindblad equation. As an example, we study transport in monoatomic and diatomic chains of non-interacting spinless fermions. We show numerically the breakdown of the Onsager reciprocity relation due to the dissipative terms of the model.
In the present work we provide an easily accessible way to achieve the singlet-triplet Kondo effect in a hybrid system consisting of a quantum point contact (QPC) coupled to an electronic cavity. We show that by activating the coupling between the QP C and cavity, a zero-bias anomaly occurs in a low conductance regime, a coexistence of zero-bias and finite-bias anomaly (FBA) in a medium conductance regime, and a FBA-only anomaly in a high conductance regime. The latter two observations are due to the singlet-triplet Kondo effect.
Almost a century ago, Johnson and Nyquist presented evidence of fluctuating electrical current and the governing fluctuation dissipation theorem (FDT). Whether, likewise, temperature T can fluctuate is a controversial topic and has led to scientific debates for several decades. To resolve this issue, there was an experiment initially in 1992 where the authors found good agreement between the FDT theory for heat and experiment on a macroscopic sample. A key question is what happens when we consider a nanoscale system with much fewer particles at 100 times lower temperatures. This challenge has not been addressed up to now, due to the demanding experimental requirement on fast and sensitive thermometry on a mesoscopic absorber. Here we observe equilibrium fluctuations of temperature in a canonical system of about 10^8 electrons exchanging energy with phonon bath at a fixed temperature. Moreover, temperature fluctuations under nonequilibrium conditions present a nontrivial dependence on the chemical potential bias of a hot electron source. These fundamental fluctuations of T set the ultimate lower bound of the energy resolution of a calorimeter.
By studying the time-dependent axial and radial growth of InSb nanowires, we map the conditions for the synthesis of single-crystalline InSb nanocrosses by molecular beam epitaxy. Low-temperature electrical measurements of InSb nanocross devices with local gate control on individual terminals exhibit quantized conductance and are used to probe the spatial distribution of the conducting channels. Tuning to a situation where the nanocross junction is connected by few-channel quantum point contacts in the connecting nanowire terminals, we show that transport through the junction is ballistic except close to pinch-off. Combined with a new concept for shadow-epitaxy of patterned superconductors on nanocrosses, the structures reported here show promise for the realization of non-trivial topological states in multi-terminal Josephson Junctions.
193 - M. Houzet , P. Samuelsson 2010
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا