ترغب بنشر مسار تعليمي؟ اضغط هنا

Extension to the Beraha-Kahane-Weiss Theorem with Applications

63   0   0.0 ( 0 )
 نشر من قبل Jason Brown
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The beautiful Beraha-Kahane-Weiss theorem has found many applications within graph theory, allowing for the determination of the limits of root of graph polynomials in settings as vast as chromatic polynomials, network reliability, and generating polynomials related to independence and domination. Here we extend the class of functions to which the BKW theorem can be applied, and provide some applications in combinatorics.



قيم البحث

اقرأ أيضاً

146 - Yuval Filmus 2018
The Friedgut-Kalai-Naor (FKN) theorem states that if $f$ is a Boolean function on the Boolean cube which is close to degree 1, then $f$ is close to a dictator, a function depending on a single coordinate. The author has extended the theorem to the sl ice, the subset of the Boolean cube consisting of all vectors with fixed Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice. As an application, we prove a stability version of the edge-isoperimetric inequality for settings of parameters in which the optimal set is a dictator.
A celebrated result of Morse and Hedlund, stated in 1938, asserts that a sequence $x$ over a finite alphabet is ultimately periodic if and only if, for some $n$, the number of different factors of length $n$ appearing in $x$ is less than $n+1$. Attem pts to extend this fundamental result, for example, to higher dimensions, have been considered during the last fifteen years. Let $dge 2$. A legitimate extension to a multidimensional setting of the notion of periodicity is to consider sets of $ZZ^d$ definable by a first order formula in the Presburger arithmetic $<ZZ;<,+>$. With this latter notion and using a powerful criterion due to Muchnik, we exhibit a complete extension of the Morse--Hedlund theorem to an arbitrary dimension $d$ and characterize sets of $ZZ^d$ definable in $<ZZ;<,+>$ in terms of some functions counting recurrent blocks, that is, blocks occurring infinitely often.
Generalized polynomials are mappings obtained from the conventional polynomials by the use of operations of addition, multiplication and taking the integer part. Extending the classical theorem of H. Weyl on equidistribution of polynomials, we show t hat a generalized polynomial $q(n)$ has the property that the sequence $(q(n) lambda)_{n in mathbb{Z}}$ is well distributed $bmod , 1$ for all but countably many $lambda in mathbb{R}$ if and only if $limlimits_{substack{|n| rightarrow infty n otin J}} |q(n)| = infty$ for some (possibly empty) set $J$ having zero density in $mathbb{Z}$. We also prove a version of this theorem along the primes (which may be viewed as an extension of classical results of I. Vinogradov and G. Rhin). Finally, we utilize these results to obtain new examples of sets of recurrence and van der Corput sets.
We give a new proof of the Cauchy-Davenport Theorem for linear maps given by Herdade et al., (2015). This theorem gives a lower bound on the size of the image of a linear map on a grid. Our proof is purely combinatorial and offers a partial insight i nto the range of parameters not handled previously.
118 - Doowon Koh , Thang Pham 2020
In this paper, we prove an extension theorem for spheres of square radii in $mathbb{F}_q^d$, which improves a result obtained by Iosevich and Koh (2010). Our main tool is a new point-hyperplane incidence bound which will be derived via a cone restric tion theorem. We also will study applications on distance problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا