ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical Properties of Atomically Thin Boron Nitride and the Role of Interlayer Interactions

170   0   0.0 ( 0 )
 نشر من قبل Lu Hua Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but the investigation of their mechanical properties still greatly lacks. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviors quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better mechanical integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, e.g. as mechanical reinforcements.

قيم البحث

اقرأ أيضاً

137 - J. P. Hague 2012
A theory is presented for the modification of bandgaps in atomically thin boron nitride (BN) by attractive interactions mediated through phonons in a polarizable substrate, or in the BN plane. Gap equations are solved, and gap enhancements are found to range up to 70% for dimensionless electron-phonon coupling lambda=1, indicating that a proportion of the measured BN bandgap may have a phonon origin.
Large-area two-dimensional (2D) materials for technical applications can now be produced by chemical vapor deposition (CVD). Unfortunately, grain boundaries (GBs) are ubiquitously introduced as a result of the coalescence of grains with different cry stallographic orientations. It is well known that the properties of materials largely depend on GB structures. Here, we carried out a systematic study on the GB structures in CVD-grown polycrystalline h-BN monolayer films by transmission electron microscope. Interestingly, most of these GBs are revealed to be formed via overlapping between neighboring grains, which are distinct from the covalently bonded GBs as commonly observed in other 2D materials. Further density functional theory (DFT) calculations show that the hydrogen plays an essential role in overlapping GB formation. This work provides an in-depth understanding of the microstructures and formation mechanisms of GBs in CVD-grown h-BN films, which should be informative in guiding the precisely controlled synthesis of large area single crystalline h-BN and other 2D materials.
122 - Jin Yu , Lihua Qu , Edo van Veen 2017
Boron nitride structures have excellent thermal and chemical stabilities. Based on state-of-art theoretical calculations, we propose a wide gap semiconducting BN crystal with a three-dimensional hyperhoneycomb structure (Hp-BN), which is both mechani cally and thermodynamically stable. Our calculated results show that Hp-BN has a higher bulk modulus and a smaller energy gap as compared to c-BN. Moreover, due to the unique bonding structure, Hp-BN exhibits anisotropic electronic and optical properties. It has great adsorption in the ultraviolet region, but it is highly transparent in the visible and infrared region, suggesting that the Hp-BN crystal could have potential applications in electronic and optical devices.
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. T he presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
We analyze the optical, chemical, and electrical properties of chemical vapor deposition (CVD) grown hexagonal boron nitride (h-BN) using the precursor ammonia-borane ($H_3N-BH_3$) as a function of $Ar/H_2$ background pressure ($P_{TOT}$). Films grow n at $P_{TOT}$ less than 2.0 Torr are uniform in thickness, highly crystalline, and consist solely of h-BN. At larger $P_{TOT}$, with constant precursor flow, the growth rate increases, but the resulting h-BN is more amorphous, disordered, and $sp^3$ bonded. We attribute these changes in h-BN grown at high pressure to incomplete thermolysis of the $H_3N-BH_3$ precursor from a passivated Cu catalyst. A similar increase in h-BN growth rate and amorphization is observed even at low $P_{TOT}$ if the $H_3N-BH_3$ partial pressure is initially greater than the background pressure $P_{TOT}$ at the beginning of growth. h-BN growth using the $H_3N-BH_3$ precursor reproducibly can give large-area, crystalline h-BN thin films, provided that the total pressure is under 2.0 Torr and the precursor flux is well-controlled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا