ﻻ يوجد ملخص باللغة العربية
Networks are largely used for modelling and analysing data and relations among them. Recently, it has been shown that the use of a single network may not be the optimal choice, since a single network may misses some aspects. Consequently, it has been proposed to use a pair of networks to better model all the aspects, and the main approach is referred to as dual networks (DNs). DNs are two related graphs (one weighted, the other unweighted) that share the same set of vertices and two different edge sets. In DNs is often interesting to extract common subgraphs among the two networks that are maximally dense in the conceptual network and connected in the physical one. The simplest instance of this problem is finding a common densest connected subgraph (DCS), while we here focus on the detection of the Top-k Densest Connected subgraphs, i.e. a set k subgraphs having the largest density in the conceptual network which are also connected in the physical network. We formalise the problem and then we propose a heuristic to find a solution, since the problem is computationally hard. A set of experiments on synthetic and real networks is also presented to support our approach.
A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put on the problem of finding a single dense subgraph, only r
Computing cohesive subgraphs is a central problem in graph theory. While many formulations of cohesive subgraphs lead to NP-hard problems, finding a densest subgraph can be done in polynomial time. As such, the densest subgraph model has emerged as t
In the minimum $k$-edge-connected spanning subgraph ($k$-ECSS) problem the goal is to find the minimum weight subgraph resistant to up to $k-1$ edge failures. This is a central problem in network design, and a natural generalization of the minimum sp
The Densest $k$-Subgraph (D$k$S) problem, and its corresponding minimization problem Smallest $p$-Edge Subgraph (S$p$ES), have come to play a central role in approximation algorithms. This is due both to their practical importance, and their usefulne
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-