ﻻ يوجد ملخص باللغة العربية
As Fredholm determinants are more and more frequent in the context of stochastic integrability, we unveil the existence of a common framework in many integrable systems where they appear. This consists in a quasi-universal hierarchy of equations, partly unifying an integro-differential generalization of the Painleve II hierarchy, the finite-time solutions of the Kardar-Parisi-Zhang equation, multi-critical fermions at finite temperature and a notable solution to the Zakharov-Shabat system associated to the largest real eigenvalue in the real Ginibre ensemble. As a byproduct, we obtain the explicit unique solution to the inverse scattering transform of the Zakharov-Shabat system in terms of a Fredholm determinant.
We obtain asymptotic expansions for Toeplitz determinants corresponding to a family of symbols depending on a parameter $t$. For $t$ positive, the symbols are regular so that the determinants obey SzegH{o}s strong limit theorem. If $t=0$, the symbol
A wide class of binary-state dynamics on networks---including, for example, the voter model, the Bass diffusion model, and threshold models---can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest
We study the effect of uncorrelated random disorder on the temperature dependence of the superfluid stiffness in the two-dimensional classical XY model. By means of a perturbative expansion in the disorder potential, equivalent to the T-matrix approx
A large class of two dimensional quantum gravity theories of Jackiw-Teitelboim form have a description in terms of random matrix models. Such models, treated fully non-perturbatively, can give an explicit and tractable description of the underlying `
We demonstrate a method to solve a general class of random matrix ensembles numerically. The method is suitable for solving log-gas models with biorthogonal type two-body interactions and arbitrary potentials. We reproduce standard results for a vari