ﻻ يوجد ملخص باللغة العربية
The notion of the Ricci curvature is defined for sprays on a manifold. With a volume form on a manifold, every spray can be deformed to a projective spray. The Ricci curvature of a projective spray is called the projective Ricci curvature. In this paper, we introduce the notion of projectively Ricci-flat sprays. We establish a global rigidity result for projectively Ricci-flat sprays with nonnegative Ricci curvature. Then we study and characterize projectively Ricci-flat Randers metrics.
Motivated by the recent work of Chu-Lee-Tam on the nefness of canonical line bundle for compact K{a}hler manifolds with nonpositive $k$-Ricci curvature, we consider a natural notion of {em almost nonpositive $k$-Ricci curvature}, which is weaker than
For $k ge 2,$ let $M^{4k-1}$ be a $(2k{-}2)$-connected closed manifold. If $k equiv 1$ mod $4$ assume further that $M$ is $(2k{-}1)$-parallelisable. Then there is a homotopy sphere $Sigma^{4k-1}$ such that $M sharp Sigma$ admits a Ricci positive metr
Measure contraction property is a synthetic Ricci curvature lower bound for metric measure spaces. We consider Sasakian manifolds with non-negative Tanaka-Webster Ricci curvature equipped with the metric measure space structure defined by the sub-Rie
We establish new obstruction results to the existence of Riemannian metrics on tori satisfying mixed bounds on both their sectional and Ricci curvatures. More precisely, from Lohkamps theorem, every torus of dimension at least three admits Riemannian
Consider a Riemannian manifold $(M^{m}, g)$ whose volume is the same as the standard sphere $(S^{m}, g_{round})$. If $p>frac{m}{2}$ and $int_{M} left{ Rc-(m-1)gright}_{-}^{p} dv$ is sufficiently small, we show that the normalized Ricci flow initiated