ترغب بنشر مسار تعليمي؟ اضغط هنا

Density sensitivity of empirical functionals

74   0   0.0 ( 0 )
 نشر من قبل Suhwan Song
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to $H_2^+$ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimmes D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 datasets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost, by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.



قيم البحث

اقرأ أيضاً

Kernel ridge regression is used to approximate the kinetic energy of non-interacting fermions in a one-dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, and highly accu rate energies are achieved. Accurate {em constrained optimal densities} are found via a modified Euler-Lagrange constrained minimization of the total energy. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ ies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
115 - Jianwei Sun , Bing Xiao , 2012
The semilocal meta generalized gradient approximation (MGGA) for the exchange-correlation functional of Kohn-Sham (KS) density functional theory can yield accurate ground-state energies simultaneously for atoms, molecules, surfaces, and solids, due t o the inclusion of kinetic energy density as an input. We study for the first time the effect and importance of the dependence of MGGA on the kinetic energy density through the dimensionless inhomogeneity parameter, $alpha$, that characterizes the extent of orbital overlap. This leads to a simple and wholly new MGGA exchange functional, which interpolates between the single-orbital regime, where $alpha=0$, and the slowly varying density regime, where $alpha approx 1$, and then extrapolates to $alpha to infty$. When combined with a variant of the Perdew-Burke-Erzerhof (PBE) GGA correlation, the resulting MGGA performs equally well for atoms, molecules, surfaces, and solids.
63 - Ayoub Aouina , Matteo Gatti , 2020
The many-body problem can in general not be solved exactly, and one of the most prominent approximations is to build perturbation expansions. A huge variety of expansions is possible, which differ by the quantity to be expanded, the expansion variabl e, the starting point, and ideas how to resum or terminate the series. Although much has been discussed and much has been done, some choices were made for historical reasons, in particular, limited computation or storage capacities. The present work aims at examining the justifications for different choices made in different contexts, by comparing ingredients of functionals based on GF s on one side, and on the charge density on the other side. Of particular interest will be the question of how to build an optimal starting point for the approximation of non-local quantities, making use of near- or far-sightedness, and daring to consider models beyond the homogeneous electron gas. This will include the use of connector approximations. We will also discuss why it is a good idea to build functionals of the density.
The homogeneous electron gas (HEG) is a key ingredient in the construction of most exchange-correlation functionals of density-functional theory. Often, the energy of the HEG is parameterized as a function of its spin density $n$, leading to the loca l density approximation (LDA) for inhomogeneous systems. However, the connection between the electron density and kinetic energy density of the HEG can be used to generalize the LDA by evaluating it on a weighted geometric average of the local spin density and the spin density of a HEG that has the local kinetic energy density of the inhomogeneous system, with a mixing ratio $x$. This leads to a new family of functionals that we term meta-local density approximations (meta-LDAs), which are still exact for the HEG, which are derived only from properties of the HEG, and which form a new rung of Jacobs ladder of density functionals. The first functional of this ladder, the local $tau$ approximation (LTA) of Ernzerhof and Scuseria that corresponds to $x=1$ is unfortunately not stable enough to be used in self-consistent field calculations, because it leads to divergent potentials as we show in this work. However, a geometric averaging of the LDA and LTA densities with smaller values of $x$ not only leads to numerical stability of the resulting functional, but also yields more accurate exchange energies in atomic calculations than the LDA, the LTA, or the tLDA functional ($x=1/4$) of Eich and Hellgren. We choose $x=0.50$ as it gives the best total energy in self-consistent exchange-only calculations for the argon atom. Atomization energy benchmarks confirm that the choice $x=0.50$ also yields improved energetics in combination with correlation functionals in molecules, almost eliminating the well-known overbinding of the LDA and reducing its error by two thirds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا