We review epidemiological models for the propagation of the COVID-19 pandemic during the early months of the outbreak: from February to May 2020. The aim is to propose a methodological review that highlights the following characteristics: (i) the epi
demic propagation models, (ii) the modeling of intervention strategies, (iii) the models and estimation procedures of the epidemic parameters and (iv) the characteristics of the data used. We finally selected 80 articles from open access databases based on criteria such as the theoretical background, the reproducibility, the incorporation of interventions strategies, etc. It mainly resulted to phenomenological, compartmental and individual-level models. A digital companion including an online sheet, a Kibana interface and a markdown document is proposed. Finally, this work provides an opportunity to witness how the scientific community reacted to this unique situation.
It is a well-known fact -- which can be shown by elementary calculus -- that the volume of the unit ball in $mathbb{R}^n$ decays to zero and simultaneously gets concentrated on the thin shell near the boundary sphere as $n earrow infty$. Many rigoro
us proofs and heuristic arguments are provided for this fact from different viewpoints, including Euclidean geometry, convex geometry, Banach space theory, combinatorics, probability, discrete geometry, etc. In this note we give yet another two proofs via the regularity theory of elliptic partial differential equations and calculus of variations.
A filament eruption, accompanied by a B9.5 flare, coronal dimming and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telesc
opes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5 degrees, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 A stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 A and Halpha show that when it becomes emissive in He II, it tends to disappear in Halpha, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.
Todays society faces widening disagreement and conflicts among constituents with incompatible views. Escalated views and opinions are seen not only in radical ideology or extremism but also in many other scenes of our everyday life. Here we show that
widening disagreement among groups may be linked to the advancement of information communication technology, by analyzing a mathematical model of population dynamics in a continuous opinion space. We adopted the interaction kernel approach to model enhancement of peoples information gathering ability and introduced a generalized non-local gradient as individuals perception kernel. We found that the characteristic distance between population peaks becomes greater as the wider range of opinions becomes available to individuals or the greater attention is attracted to opinions distant from theirs. These findings may provide a possible explanation for why disagreement is growing in todays increasingly interconnected society, without attributing its cause only to specific individuals or events.