ﻻ يوجد ملخص باللغة العربية
Understanding and predicting pedestrian behavior is an important and challenging area of research for realizing safe and effective navigation strategies in automated and advanced driver assistance technologies in urban scenes. This paper focuses on monocular pedestrian action recognition and 3D localization from an egocentric view for the purpose of predicting intention and forecasting future trajectory. A challenge in addressing this problem in urban traffic scenes is attributed to the unpredictable behavior of pedestrians, whereby actions and intentions are constantly in flux and depend on the pedestrians pose, their 3D spatial relations, and their interaction with other agents as well as with the environment. To partially address these challenges, we consider the importance of pose toward recognition and 3D localization of pedestrian actions. In particular, we propose an action recognition framework using a two-stream temporal relation network with inputs corresponding to the raw RGB image sequence of the tracked pedestrian as well as the pedestrian pose. The proposed method outperforms methods using a single-stream temporal relation network based on evaluations using the JAAD public dataset. The estimated pose and associated body key-points are also used as input to a network that estimates the 3D location of the pedestrian using a unique loss function. The evaluation of our 3D localization method on the KITTI dataset indicates the improvement of the average localization error as compared to existing state-of-the-art methods. Finally, we conduct qualitative tests of action recognition and 3D localization on HRIs H3D driving dataset.
We tackle the fundamentally ill-posed problem of 3D human localization from monocular RGB images. Driven by the limitation of neural networks outputting point estimates, we address the ambiguity in the task by predicting confidence intervals through
Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to inaccurate localization of specific attributes. In this paper, we propose a novel view-attribute localization method based on attention (VALA), which relies
We present a novel framework named NeuralRecon for real-time 3D scene reconstruction from a monocular video. Unlike previous methods that estimate single-view depth maps separately on each key-frame and fuse them later, we propose to directly reconst
Perceiving humans in the context of Intelligent Transportation Systems (ITS) often relies on multiple cameras or expensive LiDAR sensors. In this work, we present a new cost-effective vision-based method that perceives humans locations in 3D and thei
Tracking and reconstructing the 3D pose and geometry of two hands in interaction is a challenging problem that has a high relevance for several human-computer interaction applications, including AR/VR, robotics, or sign language recognition. Existing