ترغب بنشر مسار تعليمي؟ اضغط هنا

Using uniaxial stress to probe the relationship between competing superconducting states in a cuprate with spin-stripe order

174   0   0.0 ( 0 )
 نشر من قبل Zurab Guguchia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La2-xBaxCuO4 with x = 0.115. An extremely low uniaxial stress of 0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from 10 to 32 K; however, the onset of at-least-2D superconductivity is much less sensitive to stress. These results show not only that large-volume-fraction spin-stripe order is anti-correlated with 3D superconducting (SC) coherence, but also that these states are energetically very finely balanced. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. These results strongly suggest a similar pairing mechanism for spin-stripe order, the spatially-modulated 2D and uniform 3D SC orders, imposing an important constraint on theoretical models.


قيم البحث

اقرأ أيضاً

The cuprate high-temperature superconductors (HTSC) have been the subject of intense study for more than 30 years with no consensus yet on the underlying mechanism of the superconductivity. Conventional wisdom dictates that the mysterious and extraor dinary properties of the cuprates arise from doping a strongly correlated antiferromagnetic (AFM) insulator (1,2). The highly overdoped cuprates$-$those beyond the dome of superconductivity (SC)--are considered to be conventional Fermi liquid metals (3). Here, we report the emergence of itinerant ferromagnetic order (FM) below 4K for doping beyond the SC dome in electron-doped La$_{2-x} $Ce$_x$CuO$_4$ (LCCO). The existence of this FM order is evidenced by negative, anisotopic and hysteretic magnetoresistance, hysteretic magnetization, and the polar Kerr effect, all of which are standard signatures of itinerant FM in metals (4,5). This surprising new result suggests that the overdoped cuprates are also influenced by electron correlations and the physics is much richer than that of a conventional Fermi liquid metal.
The origin of uniaxial and hydrostatic pressure effects on $T_c$ in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation give s axial-dependent pressure coefficients, $partial T_c/partial P_a>0$, $partial T_c/partial P_c<0$, with a hydrostatic response $partial T_c/partial P>0$ for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher $T_c$ is achieved with an orbital distillation, namely, the less the $d_{x^2-y^2}$ main band is hybridized with the $d_{z^2}$ and $4s$ orbitals higher the $T_c$. Some implications for obtaining higher $T_c$ materials are discussed.
142 - J. P. Sun , K. Matsuura , G. Z. Ye 2015
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (${T_{rm c}}$) superconductors. Unlike other iron-based superconductors, F eSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. More importantly, a pressure-induced fourfold increase of ${T_{rm c}}$ has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to $sim9$ GPa, which uncover a hidden magnetic dome superseding the nematic order. Above ${sim6}$ GPa the sudden enhancement of superconductivity (${T_{rm c}le38.3}$ K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed above the high-${T_{rm c}}$ phase. The obtained phase diagram highlights unique features among iron-based superconductors, but bears some resemblance to that of high-${T_{rm c}}$ cuprates.
229 - Y.-S. Li , R. Borth , C. W. Hicks 2020
We report the development of a technique to measure heat capacity at large uniaxial pressure using a piezoelectric-driven device generating compressive and tensile strain in the sample. Our setup is optimized for temperatures ranging from 8 K down to millikelvin. Using an AC heat-capacity technique we are able to achieve an extremely high resolution and to probe a homogeneously strained part of the sample. We demonstrate the capabilities of our setup on the unconventional superconductor Sr$_2$RuO$_4$. By replacing thermometer and adjusting the remaining setup accordingly the temperature regime of the experiment can be adapted to other temperature ranges of interest.
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolu tion high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below T_S = 110(2) K followed by stripe-like antiferromagnetic ordering of the Fe moments below T_N = 96(2) K. These findings demonstrate that major features of the Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا