ﻻ يوجد ملخص باللغة العربية
We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or the hidden state from LSTM. This single vector representation is prone to overlooking the detailed descriptions in the query. To address this query modeling deficiency, we propose a recursive sub-query construction framework, which reasons between image and query for multiple rounds and reduces the referring ambiguity step by step. We show our new one-stage method obtains 5.0%, 4.5%, 7.5%, 12.8% absolute improvements over the state-of-the-art one-stage baseline on ReferItGame, RefCOCO, RefCOCO+, and RefCOCOg, respectively. In particular, superior performances on longer and more complex queries validates the effectiveness of our query modeling.
An LBYL (`Look Before You Leap) Network is proposed for end-to-end trainable one-stage visual grounding. The idea behind LBYL-Net is intuitive and straightforward: we follow a languages description to localize the target object based on its relative
In this paper, we propose a novel end-to-end model, namely Single-Stage Grounding network (SSG), to localize the referent given a referring expression within an image. Different from previous multi-stage models which rely on object proposals or detec
Visual dialog is a challenging vision-language task, which requires the agent to answer multi-round questions about an image. It typically needs to address two major problems: (1) How to answer visually-grounded questions, which is the core challenge
In this paper, we explore a novel task named visual Relation Grounding in Videos (vRGV). The task aims at spatio-temporally localizing the given relations in the form of subject-predicate-object in the videos, so as to provide supportive visual facts
The major challenge in audio-visual event localization task lies in how to fuse information from multiple modalities effectively. Recent works have shown that attention mechanism is beneficial to the fusion process. In this paper, we propose a novel