ترغب بنشر مسار تعليمي؟ اضغط هنا

SPT-CL J2032-5627: a new Southern double relic cluster observed with ASKAP

64   0   0.0 ( 0 )
 نشر من قبل Stefan W. Duchesne
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a radio and X-ray analysis of the galaxy cluster SPT-CL J2032-5627. Investigation of public data from the Australian Square Kilometre Array Pathfinder (ASKAP) at 943 MHz shows two previously undetected radio relics at either side of the cluster. For both relic sources we utilise archival Australia Telescope Compact Array (ATCA) data at 5.5 GHz in conjunction with the new ASKAP data to determine that both have steep integrated radio spectra ($alpha_mathrm{SE} = -1.52 pm 0.10$ and $alpha_mathrm{NW,full} = -1.18 pm 0.10$ for the southeast and northwest relic sources, respectively). No shock is seen in XMM-Newton observations, however, the southeast relic is preceded by a cold front in the X-ray emitting intra-cluster medium. We suggest the lack of a detectable shock may be due to instrumental limitations, comparing the situation to the southeast relic in Abell 3667. We compare the relics to the population of double relic sources and find they are located below the current power-mass ($P$-$M$) scaling relation. We present an analysis of the low-surface brightness sensitivity of ASKAP and the ATCA, the excellent sensitivity of both allow the ability to find heretofore undetected diffuse sources, suggesting these low-power radio relics will become more prevalent in upcoming large-area radio surveys such as the Evolutionary Map of the Universe (EMU).

قيم البحث

اقرأ أيضاً

Magnetic fields are ubiquitous in galaxy clusters, yet their radial profile, power spectrum, and connection to host cluster properties are poorly known. Merging galaxy clusters hosting diffuse polarized emission in the form of radio relics offer a un ique possibility to study the magnetic fields in these complex systems. In this paper, we investigate the intra-cluster magnetic field in Abell 2345. This cluster hosts two radio relics that we detected in polarization with 1-2 GHz JVLA observations. X-ray XMM-Newton images show a very disturbed morphology. We derived the Rotation Measure (RM) of five polarized sources within $sim$ 1 Mpc from the cluster center applying the RM synthesis. Both, the average RM and the RM dispersion radial profiles probe the presence of intra-cluster magnetic fields. Using the thermal electron density profile derived from X-ray analysis and simulating a 3D magnetic field with fluctuations following a power spectrum derived from magneto-hydrodynamical cosmological simulations, we build mock RM images of the cluster. We constrained the magnetic field profile in the eastern radio relic sector by comparing simulated and observed RM images. We find that, within the framework of our model, the data require a magnetic field scaling with thermal electron density as $B(r)propto n_e(r)$. The best model has a central magnetic field (within a 200 kpc radius) of $2.8pm0.1$ $mu$G. The average magnetic field at the position of the eastern relic is $sim$0.3 $mu$G, a factor 2.7 lower than the equipartition estimate.
We report on the discovery of a new Milky Way companion stellar system located at (RA, Dec) = (22h10m43.15s, +14:56:58.8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using CFHT-MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9+1.0-1.6 kpc, with a half-light radius of r_h = 7.24+1.94-1.29 pc and a concentration parameter of c = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log(age) = 10.07+0.05-0.03 and [Fe/H] = -1.58+0.08-0.13 . These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 96 +/- 3 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of MV = -1.21 +/- 0.66. The resulting surface brightness is uV = 25.9 mag/arcsec2 . Its position in the M_V vs. r_h diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster - one of the faintest and lowest mass systems yet identified.
We present the discovery of another Odd Radio Circle (ORC) with the Australian Square Kilometre Array Pathfinder (ASKAP) at 944 MHz. The observed radio ring, ORC J0102-2450, has a diameter of ~70 arcsec or 300 kpc, if associated with the central elli ptical galaxy DES J010224.33-245039.5 (z ~ 0.27). Considering the overall radio morphology (circular ring and core) and lack of ring emission at non-radio wavelengths, we investigate if ORC J0102-2450 could be the relic lobe of a giant radio galaxy seen end-on or the result of a giant blast wave. We also explore possible interaction scenarios, for example, with the companion galaxy, DES J010226.15-245104.9, located in or projected onto the south-eastern part of the ring. We encourage the search for further ORCs in radio surveys to study their properties and origin.
We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio e mission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
We present a lens model for the cluster SPT-CLJ0615$-$5746, which is the highest redshift ($z=0.972$) system in the Reionization of Lensing Clusters Survey (RELICS), making it the highest redshift cluster for which a full strong lens model is publish ed. We identify three systems of multiply-imaged lensed galaxies, two of which we spectroscopically confirm at $z=1.358$ and $z=4.013$, which we use as constraints for the model. We find a foreground structure at $zsim0.4$, which we include as a second cluster-sized halo in one of our models; however two different statistical tests find the best-fit model consists of one cluster-sized halo combined with three individually optimized galaxy-sized halos, as well as contributions from the cluster galaxies themselves. We find the total projected mass density within $r=26.7$ (the region where the strong lensing constraints exist) to be $M=2.51^{+0.15}_{-0.09}times 10^{14}$~M$_{odot}$. If we extrapolate out to $r_{500}$, our projected mass density is consistent with the mass inferred from weak lensing and from the Sunyaev-Zeldovich effect ($Msim10^{15}$~M$_{odot}$). This cluster is lensing a previously reported $zsim10$ galaxy, which, if spectroscopically confirmed, will be the highest-redshift strongly lensed galaxy known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا