ﻻ يوجد ملخص باللغة العربية
In this paper, a long-term survival model under competing risks is considered. The unobserved number of competing risks is assumed to follow a negative binomial distribution that can capture both over- and under-dispersion. Considering the latent competing risks as missing data, a variation of the well-known expectation maximization (EM) algorithm, called the stochastic EM algorithm (SEM), is developed. It is shown that the SEM algorithm avoids calculation of complicated expectations, which is a major advantage of the SEM algorithm over the EM algorithm. The proposed procedure also allows the objective function to be split into two simpler functions, one corresponding to the parameters associated with the cure rate and the other corresponding to the parameters associated with the progression times. The advantage of this approach is that each simple function, with lower parameter dimension, can be maximized independently. An extensive Monte Carlo simulation study is carried out to compare the performances of the SEM and EM algorithms. Finally, a breast cancer survival data is analyzed and it is shown that the SEM algorithm performs better than the EM algorithm.
Handling missing values plays an important role in the analysis of survival data, especially, the ones marked by cure fraction. In this paper, we discuss the properties and implementation of stochastic approximations to the expectation-maximization (
In this paper, we propose a new estimation methodology based on a projected non-linear conjugate gradient (PNCG) algorithm with an efficient line search technique. We develop a general PNCG algorithm for a survival model incorporating a proportion cu
The mixture cure rate model is the most commonly used cure rate model in the literature. In the context of mixture cure rate model, the standard approach to model the effect of covariates on the cured or uncured probability is to use a logistic funct
In this paper, we develop a new estimation procedure based on the non-linear conjugate gradient (NCG) algorithm for the Box-Cox transformation cure rate model. We compare the performance of the NCG algorithm with the well-known expectation maximizati
A new robust stochastic volatility (SV) model having Student-t marginals is proposed. Our process is defined through a linear normal regression model driven by a latent gamma process that controls temporal dependence. This gamma process is strategica