ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributional solutions of Burgers type equations for intrinsic graphs in Carnot groups of step 2

79   0   0.0 ( 0 )
 نشر من قبل Daniela Di Donato
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that in arbitrary Carnot groups $mathbb G$ of step 2, with a splitting $mathbb G=mathbb Wcdotmathbb L$ with $mathbb L$ one-dimensional, the graph of a continuous function $varphicolon Usubseteq mathbb Wto mathbb L$ is $C^1_{mathrm{H}}$-regular precisely when $varphi$ satisfies, in the distributional sense, a Burgers type system $D^{varphi}varphi=omega$, with a continuous $omega$. We stress that this equivalence does not hold already in the easiest step-3 Carnot group, namely the Engel group. As a tool for the proof we show that a continuous distributional solution $varphi$ to a Burgers type system $D^{varphi}varphi=omega$, with $omega$ continuous, is actually a broad solution to $D^{varphi}varphi=omega$. As a by-product of independent interest we obtain that all the continuous distributional solutions to $D^{varphi}varphi=omega$, with $omega$ continuous, enjoy $1/2$-little Holder regularity along vertical directions.



قيم البحث

اقرأ أيضاً

In arbitrary Carnot groups we study intrinsic graphs of maps with horizontal target. These graphs are $C^1_H$ regular exactly when the map is uniformly intrinsically differentiable. Our first main result characterizes the uniformly intrinsic differen tiability by means of Holder properties along the projections of left-invariant vector fields on the graph. We strengthen the result in step-2 Carnot groups for intrinsic real-valued maps by only requiring horizontal regularity. We remark that such a refinement is not possible already in the easiest step-3 group. As a by-product of independent interest, in every Carnot group we prove an area-formula for uniformly intrinsically differentiable real-valued maps. We also explicitly write the area element in terms of the intrinsic derivatives of the map.
In this paper we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions on the free step-2 rank-$n$ Car not algebra is isomorphic to the exterior algebra of $mathbb{R}^n$. Using that every Carnot algebra can be written as a quotient of a free Carnot algebra, we shall deduce from the free case a description of h-affine functions on arbitrary step-2 Carnot algebras, together with several characterizations of those step-2 Carnot algebras where h-affine functions are affine in the usual sense of vector spaces. Our interest for h-affine functions stems from their relationship with a class of sets called precisely monotone, recently introduced in the literature, as well as from their relationship with minimal hypersurfaces.
We give a construction of direct limits in the category of complete metric scalable groups and provide sufficient conditions for the limit to be an infinite-dimensional Carnot group. We also prove a Rademacher-type theorem for such limits.
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of the first author and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of the Analysts Traveling Salesman Theorem, which characterizes subsets of rectifiable curves in $mathbb{R}^2$ (P. Jones, 1990), in $mathbb{R}^n$ (K. Okikolu, 1992), or in an arbitrary Carnot group (the second author) in terms of local geometric least squares data called Jones $beta$-numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in $mathbb{R}^n$ that charges a rectifiable curve in an arbitrary complete, quasiconvex, doubling metric space.
We formalize the notion of limit of an inverse system of metric spaces with $1$-Lipschitz projections having unbounded fibers. The purpose is to use sub-Riemannian groups for metrizing the space of signatures of rectifiable paths in Euclidean spaces, as introduced by Chen. The constructive limit space has the universal property in the category of pointed metric spaces with 1-Lipschitz maps. In the general setting some metric properties are discussed such as the existence of geodesics and lifts. The notion of submetry will play a crucial role. The construction is applied to the sequence of free Carnot groups of fixed rank $n$ and increasing step. In this case, such limit space is in correspondence with the space of signatures of rectifiable paths in $mathbb R^n$. Hambly-Lyonss result on the uniqueness of signature implies that this space is a geodesic metric tree that brunches at every point with infinite valence. As a particular consequence we deduce that every path in $mathbb R^n$ can be approximated by projections of some geodesics in some Carnot group of rank $n$, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا