ترغب بنشر مسار تعليمي؟ اضغط هنا

Video Super-Resolution with Recurrent Structure-Detail Network

136   0   0.0 ( 0 )
 نشر من قبل Takashi Isobe
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most video super-resolution methods super-resolve a single reference frame with the help of neighboring frames in a temporal sliding window. They are less efficient compared to the recurrent-based methods. In this work, we propose a novel recurrent video super-resolution method which is both effective and efficient in exploiting previous frames to super-resolve the current frame. It divides the input into structure and detail components which are fed to a recurrent unit composed of several proposed two-stream structure-detail blocks. In addition, a hidden state adaptation module that allows the current frame to selectively use information from hidden state is introduced to enhance its robustness to appearance change and error accumulation. Extensive ablation study validate the effectiveness of the proposed modules. Experiments on several benchmark datasets demonstrate the superior performance of the proposed method compared to state-of-the-art methods on video super-resolution.



قيم البحث

اقرأ أيضاً

We proposed a novel architecture for the problem of video super-resolution. We integrate spatial and temporal contexts from continuous video frames using a recurrent encoder-decoder module, that fuses multi-frame information with the more traditional , single frame super-resolution path for the target frame. In contrast to most prior work where frames are pooled together by stacking or warping, our model, the Recurrent Back-Projection Network (RBPN) treats each context frame as a separate source of information. These sources are combined in an iterative refinement framework inspired by the idea of back-projection in multiple-image super-resolution. This is aided by explicitly representing estimated inter-frame motion with respect to the target, rather than explicitly aligning frames. We propose a new video super-resolution benchmark, allowing evaluation at a larger scale and considering videos in different motion regimes. Experimental results demonstrate that our RBPN is superior to existing methods on several datasets.
94 - Sheng Li , Fengxiang He , Bo Du 2019
Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However, straight utilizing 3D convolutions may lead to an excessively high computational complexity which restricts the depth of video SR models and thus undermine the performance. In this paper, we present a novel fast spatio-temporal residual network (FSTRN) to adopt 3D convolutions for the video SR task in order to enhance the performance while maintaining a low computational load. Specifically, we propose a fast spatio-temporal residual block (FRB) that divide each 3D filter to the product of two 3D filters, which have considerably lower dimensions. Furthermore, we design a cross-space residual learning that directly links the low-resolution space and the high-resolution space, which can greatly relieve the computational burden on the feature fusion and up-scaling parts. Extensive evaluations and comparisons on benchmark datasets validate the strengths of the proposed approach and demonstrate that the proposed network significantly outperforms the current state-of-the-art methods.
220 - Wenbo Li , Xin Tao , Taian Guo 2020
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame. In this process, inter- and intra-frames are the key sources for exploiting temporal and spatial information. However , there are a couple of limitations for existing VSR methods. First, optical flow is often used to establish temporal correspondence. But flow estimation itself is error-prone and affects recovery results. Second, similar patterns existing in natural images are rarely exploited for the VSR task. Motivated by these findings, we propose a temporal multi-correspondence aggregation strategy to leverage similar patches across frames, and a cross-scale nonlocal-correspondence aggregation scheme to explore self-similarity of images across scales. Based on these two new modules, we build an effective multi-correspondence aggregation network (MuCAN) for VSR. Our method achieves state-of-the-art results on multiple benchmark datasets. Extensive experiments justify the effectiveness of our method.
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp uting ability for sequence-to-sequence modeling. Thus, it seems to be straightforward to apply the vision Transformer to solve VSR. However, the typical block design of Transformer with a fully connected self-attention layer and a token-wise feed-forward layer does not fit well for VSR due to the following two reasons. First, the fully connected self-attention layer neglects to exploit the data locality because this layer relies on linear layers to compute attention maps. Second, the token-wise feed-forward layer lacks the feature alignment which is important for VSR since this layer independently processes each of the input token embeddings without any interaction among them. In this paper, we make the first attempt to adapt Transformer for VSR. Specifically, to tackle the first issue, we present a spatial-temporal convolutional self-attention layer with a theoretical understanding to exploit the locality information. For the second issue, we design a bidirectional optical flow-based feed-forward layer to discover the correlations across different video frames and also align features. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. The code will be available at https://github.com/caojiezhang/VSR-Transformer.
Recently, single-image super-resolution has made great progress owing to the development of deep convolutional neural networks (CNNs). The vast majority of CNN-based models use a pre-defined upsampling operator, such as bicubic interpolation, to upsc ale input low-resolution images to the desired size and learn non-linear mapping between the interpolated image and ground truth high-resolution (HR) image. However, interpolation processing can lead to visual artifacts as details are over-smoothed, particularly when the super-resolution factor is high. In this paper, we propose a Deep Recurrent Fusion Network (DRFN), which utilizes transposed convolution instead of bicubic interpolation for upsampling and integrates different-level features extracted from recurrent residual blocks to reconstruct the final HR images. We adopt a deep recurrence learning strategy and thus have a larger receptive field, which is conducive to reconstructing an image more accurately. Furthermore, we show that the multi-level fusion structure is suitable for dealing with image super-resolution problems. Extensive benchmark evaluations demonstrate that the proposed DRFN performs better than most current deep learning methods in terms of accuracy and visual effects, especially for large-scale images, while using fewer parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا