ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring Magnetism in Self-intercalated Cr1+{delta}Te2 Epitaxial Films

114   0   0.0 ( 0 )
 نشر من قبل Yoshinori Okada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic transition metal dichalcogenide (TMD) films have recently emerged as promising candidates to host novel magnetic phases relevant to next-generation spintronic devices. However, systematic control of the magnetization orientation, or anisotropy, and its thermal stability, characterized by Curie temperature (Tc) remains to be achieved in such films. Here we present self-intercalated epitaxial Cr1+{delta}Te2 films as a platform for achieving systematic/smooth magnetic tailoring in TMD films. Using a molecular beam epitaxy (MBE) based technique, we have realized epitaxial Cr1+{delta}Te2 films with smoothly tunable over a wide range (0.33-0.82), while maintaining NiAs-type crystal structure. With increasing {delta}, we found monotonic enhancement of Tc from 160 to 350 K, and the rotation of magnetic anisotropy from out-of-plane to in-plane easy axis configuration for fixed film thickness. Contributions from conventional dipolar and orbital moment terms are insufficient to explain the observed evolution of magnetic behavior with {delta}. Instead, ab initio calculations suggest that the emergence of antiferromagnetic interactions with {delta}, and its interplay with conventional ferromagnetism, may play a key role in the observed trends. To our knowledge, this constitutes the first demonstration of tunable Tc and magnetic anisotropy across room temperature in TMD films, and paves the way for engineering novel magnetic phases for spintronic applications.



قيم البحث

اقرأ أيضاً

Room temperature ferromagnetism was characterized for thin films of SrTi$_{0.6}$Fe$_{0.4}$O$_{3-{delta}}$ grown by pulsed laser deposition on SrTiO$_{3}$ and Si substrates under different oxygen pressures and after annealing under oxygen and vacuum c onditions. X-ray magnetic circular dichroism demonstrated that the magnetization originated from Fe$^{2+}$ cations, whereas Fe$^{3+}$ and Ti$^{4+}$ did not contribute. Films with the highest magnetic moment (0.8 {mu}B per Fe) had the highest measured Fe$^{2+}$:Fe${^3+}$ ratio of 0.1 corresponding to the largest concentration of oxygen vacancies ({delta} = 0.19). Post-growth annealing treatments under oxidizing and reducing conditions demonstrated quenching and partial recovery of magnetism respectively, and a change in Fe valence states. The study elucidates the microscopic origin of magnetism in highly Fe-substituted SrTi$_{1-x}$Fe$_x$O$_{3-{delta}}$ perovskite oxides and demonstrates that the magnetic moment, which correlates with the relative content of Fe$^{2+}$ and Fe$^{3+}$, can be controlled via the oxygen content, either during growth or by post-growth annealing.
Physics-driven discovery in an autonomous experiment has emerged as a dream application of machine learning in physical sciences. Here we develop and experimentally implement deep kernel learning workflow combining the correlative prediction of the t arget functional response and its uncertainty from the structure, and physics-based selection of acquisition function guiding the navigation of the image space. Compared to classical Bayesian optimization methods, this approach allows to capture the complex spatial features present in the images of realistic materials, and dynamically learn structure-property relationships towards physical discovery. Here, this approach is illustrated for nanoplasmonic studies of the nanoparticles and experimentally implemented for bulk- and edge plasmon discovery in MnPS3, a lesser-known beam-sensitive layered 2D material. This approach is universal and is expected to be applicable to probe-based microscopic techniques including other STEM modalities and Scanning Probe Microscopies.
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-rang e interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
Random (disordered) components in the surface anchoring of the smectic-A liquid crystalline film in general modify the thermal pseudo-Casimir interaction. Anchoring disorder of the quenched type is in general decoupled from the thermal pseudo-Casimir force and gives rise to an additional disorder-generated interaction, in distinction to the annealed disorder, whose effect on the pseudo-Casimir force is non-additive. We consider the effects of the surface anchoring disorder by assuming that one of the substrates of the film is contaminated by a disorder source, resulting in a Gaussian-weighted distribution of the preferred molecular anchoring orientation (easy axes) on that substrate, having a finite mean and variance or, more generally, a homogeneous in-plane, two-point correlation function. We show that the presence of disorder, either of the quenched or annealed type, leads to a significant reduction in the magnitude of the net thermal fluctuation force between the confining substrates of the film. In the quenched case this is a direct consequence of an additive free energy dependent on the variance of the disorder, while in the annealed case, the suppression of the interaction force can be understood based on a disorder-renormalized, effective anchoring strength.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of sustained research interest due to their extraordinary electronic and optical properties. They also exhibit a wide range of structural phases because of the differ ent orientations that the atoms can have within a single layer, or due to the ways that different layers can stack. Here we report the first study of direct-visualization of structural transformations in atomically-thin layers under highly non-equilibrium thermodynamic conditions. We probe these transformations at the atomic scale using real-time, aberration corrected scanning transmission electron microscopy and observe strong dependence of the resulting structures and phases on both heating rate and temperature. A fast heating rate (25 C/sec) yields highly ordered crystalline hexagonal islands of sizes of less than 20 nm which are composed of a mixture of 2H and 3R phases. However, a slow heating rate (25 C/min) yields nanocrystalline and sub-stoichiometric amorphous regions. These differences are explained by different rates of sulfur evaporation and redeposition. The use of non-equilibrium heating rates to achieve highly crystalline and quantum-confined features from 2D atomic layers present a new route to synthesize atomically-thin, laterally confined nanostrucutres and opens new avenues for investigating fundamental electronic phenomena in confined dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا