ﻻ يوجد ملخص باللغة العربية
Detachment, an important mechanism for reducing target heat deposition, is achieved through reductions in power, particle and momentum; which are induced through plasma-atom and plasma-molecule interactions. Experimental research in how those reactions precisely contribute to detachment is limited. In this work, we investigate a new spectroscopic technique to utilise Hydrogen Balmer line measurements to 1) disentangle the Balmer line emission from the various plasma-atom and plasma-molecule interactions; and 2) quantify their contributions to ionisation, recombination and radiative power losses. During detachment, the observed $Halpha$ emission often strongly increases, which could be an indicator for plasma-molecule interactions involving $H_2^+$ and/or $H^-$. Our analysis technique quantifies the $Halpha$ emission due to plasma-molecule interactions and uses this to 1) quantify the Balmer line emission contribution due to $H_2^+$ and/or $H^-$; 2) subsequently estimate its resulting particle sinks/sources and radiative power losses. Its performance is verified using synthetic diagnostic techniques of both detached TCV and MAST-U SOLPS-ITER simulations. Experimental results of this technique on TCV data show a bifurcation occurs between the measured total $Halpha$ and the atomic estimate of $Halpha$ emission, indicative of the presence of additional $Halpha$ due to plasma-molecule interactions with $H_2^+$ (and/or $H^-$). An example analysis shows that the hydrogenic line series, even $Lyalpha$ as well as the medium-n Balmer lines can be significantly influenced by plasma-molecule interactions by tens of percent during which significant Molecular Activated Recombination (MAR) is expected.
The physics of divertor detachment is determined by divertor power, particle and momentum balance. This work provides a novel analysis technique of the Balmer line series to obtain a full particle/power balance measurement of the divertor. This suppl
In this work we provide experimental insights into the impact of plasma-molecule interactions on the target ion flux decrease during divertor detachment achieved through a core density ramp in the TCV tokamak. Our improved analysis of the hydrogen Ba
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new Zyflex chamber during microgravity conditions. A supersonic pro
The process of divertor detachment, whereby heat and particle fluxes to divertor surfaces are strongly diminished, is required to reduce heat loading and erosion in a magnetic fusion reactor to acceptable levels. In this paper the physics leading to
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppo