ﻻ يوجد ملخص باللغة العربية
We investigate language interpretations of two extensions of the Lambek calculus: with additive conjunction and disjunction and with additive conjunction and the unit constant. For extensions with additive connectives, we show that conjunction and disjunction behave differently. Adding both of them leads to incompleteness due to the distributivity law. We show that with conjunction only no issues with distributivity arise. In contrast, there exists a corollary of the distributivity law in the language with disjunction only which is not derivable in the non-distributive system. Moreover, this difference keeps valid for systems with permutation and/or weakening structural rules, that is, intuitionistic linear and affine logics and affine multiplicative-additive Lambek calculus. For the extension of the Lambek with the unit constant, we present a calculus which reflects natural algebraic properties of the empty word. We do not claim completeness for this calculus, but we prove undecidability for the whole range of systems extending this minimal calculus and sound w.r.t. language models. As a corollary, we show that in the language with the unit there exissts a sequent that is true if all variables are interpreted by regular language, but not true in language models in general.
We consider the Lambek calculus, or non-commutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an $omega$-rule, and prove that the derivability problem in this calculus is $Pi_1^0$-har
Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we prese
This paper shows connections between command injection attacks, continuations, and the Lambek calculus: certain command injections, such as the tautology attack on SQL, are shown to be a form of control effect that can be typed using the Lambek calcu
The Lambek calculus is a well-known logical formalism for modelling natural language syntax. The original calculus covered a substantial number of intricate natural language phenomena, but only those restricted to the context-free setting. In order t
Descriptive set theory was originally developed on Polish spaces. It was later extended to $omega$-continuous domains [Selivanov 2004] and recently to quasi-Polish spaces [de Brecht 2013]. All these spaces are countably-based. Extending descriptive s