ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

91   0   0.0 ( 0 )
 نشر من قبل Els Wolf de
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings - detection units or strings equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes.The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.



قيم البحث

اقرأ أيضاً

The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino t elescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six acoustic clusters, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.
461 - J. Carr , D. Dornic , F. Jouvenot 2007
The observation of high-energy neutrinos from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. The sensi tivity of different design options for a future cubic-kilometre scale neutrino telescope in the Mediterranean Sea is investigated for generic point sources and in particular for some of the galactic objects from which TeV gamma emmission has recently been observed by the H.E.S.S. atmospheric Cherenkov telescope. The effect of atmospheric background on the source detection probabilities has been taken into account through full simulation. The estimated event rates are compared to previous results and limits from present neutrino telescopes.
135 - Salvatore Mangano 2013
The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the accelerati on of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the u se of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.
100 - Dmitry Zaborov 2018
KM3NeT is a new generation neutrino telescope currently under construction at two sites in the Mediterranean Sea. At the Capo Passero site, 100 km off-shore Sicily, Italy, a volume of more than one cubic kilometre of water will be instrumented with o ptical sensors. This instrument, called ARCA, is optimized for observing cosmic sources of TeV and PeV neutrinos. The other site, 40 km off-shore Toulon, France, will host a much denser array of optical sensors, ORCA. With an energy threshold of a few GeV, ORCA will be capable to determine the neutrino mass hierarchy through precision measurements of atmospheric neutrino oscillations. In this contribution, we review the scientific goals of KM3NeT and the status of its construction. We also discuss the scientific potential of a neutrino beam from Protvino, Russia to ORCA. We show that such an experiment would allow for a measurement of the CP-violating phase in the neutrino mixing matrix. To achieve a sensitivity competitive with that of the other planned long-baseline neutrino experiments such as DUNE and T2HK, an upgrade of the Protvino accelerator complex will be necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا