ﻻ يوجد ملخص باللغة العربية
In some physical and biological swarms, agents effectively move and interact along curved surfaces. The associated constraints and symmetries can affect collective-motion patterns, but little is known about pattern stability in the presence of surface curvature. To make progress, we construct a general model for self-propelled swarms moving on surfaces using Lagrangian mechanics. We find that the combination of self-propulsion, friction, mutual attraction, and surface curvature produce milling patterns where each agent in a swarm oscillates on a limit cycle, with different agents splayed along the cycle such that the swarms center-of-mass remains stationary. In general, such patterns loose stability when mutual attraction is insufficient to overcome the constraint of curvature, and we uncover two broad classes of stationary milling-state bifurcations. In the first, a spatially periodic mode undergoes a Hopf bifurcation as curvature is increased which results in unstable spatiotemporal oscillations. This generic bifurcation is analyzed for the sphere and demonstrated numerically for several surfaces. In the second, a saddle-node-of-periodic-orbits occurs in which stable and unstable milling states collide and annihilate. The latter is analyzed for milling states on cylindrical surfaces. Our results contribute to the general understanding of swarm pattern-formation and stability in the presence of surface curvature, and may aid in designing robotic swarms that can be controlled to move over complex surfaces.
We present a study on the selection of a variety of activity patterns among neurons that are connected in multiplex framework, with neurons on two layers with different functional couplings. With Hindmarsh-Rose model for the dynamics of single neuron
We study a system of self-propelled agents in which each agent has a part of omnidirectional or panoramic view of its sensor disc, the field of vision of the agent in this case is only a sector of a disc bounded by two radii and the included arc. The
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric
We study mixtures of self-propelled and passive rod-like particles in two dimensions using Brownian dynamics simulations. The simulations demonstrate that the two species spontaneously segregate to generate a rich array of dynamical domain structures
It is known from both theory and experiments that introducing time delays into the communication network of mobile-agent swarms produces coherent rotational patterns. Often such spatio-temporal rotations can be bistable with other swarming patterns,