ﻻ يوجد ملخص باللغة العربية
Solar prominences are formed by partially ionized plasma with inter-particle collision frequencies generally warranting magnetohydrodynamic treatment. In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. We perform 2.5D two-fluid (charges - neutrals) simulations of the Rayleigh-Taylor instability (RTI) at a smoothly changing interface between a solar prominence thread and the corona. The purpose of this study is to deepen our understanding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper I, the sensitivity of the RTI dynamics to the prominence equilibrium configuration, including the impact of the magnetic field strength and shear supporting the prominence thread, and the amount of prominence mass-loading is explored. We show that, at small scales, a realistically smooth prominence-corona interface leads to qualitatively different linear RTI evolution than that expected for a discontinuous interface, while magnetic field shear has the stabilizing effect of reducing the growth rate or eliminating the instability. In the non-linear phase, we observe that in the presence of field shear the development of the instability leads to formation of coherent and interacting 2.5D magnetic structures, which, in turn, can lead to substantial plasma flow across magnetic field lines and associated decoupling of the fluid velocities of charges and neutrals.
In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. The purpose of this study is to deepen our understa
We investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with format
Prominence threads are dense and cold structures lying on curved magnetic fields that can be suspended in the solar atmosphere against gravity. The gravitational stability of threads, in the absence of non-ideal effects, is comprehensively investigat
Several mechanisms have been proposed to account for the formation of solar prominences or filaments, among which direct injection and evaporation-condensation models are the two most popular ones. In the direct injection model, cold plasma is ejecte