ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. I. Effects of prominence magnetization and mass loading

356   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar prominences are formed by partially ionized plasma with inter-particle collision frequencies generally warranting magnetohydrodynamic treatment. In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. We perform 2.5D two-fluid (charges - neutrals) simulations of the Rayleigh-Taylor instability (RTI) at a smoothly changing interface between a solar prominence thread and the corona. The purpose of this study is to deepen our understanding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper I, the sensitivity of the RTI dynamics to the prominence equilibrium configuration, including the impact of the magnetic field strength and shear supporting the prominence thread, and the amount of prominence mass-loading is explored. We show that, at small scales, a realistically smooth prominence-corona interface leads to qualitatively different linear RTI evolution than that expected for a discontinuous interface, while magnetic field shear has the stabilizing effect of reducing the growth rate or eliminating the instability. In the non-linear phase, we observe that in the presence of field shear the development of the instability leads to formation of coherent and interacting 2.5D magnetic structures, which, in turn, can lead to substantial plasma flow across magnetic field lines and associated decoupling of the fluid velocities of charges and neutrals.

قيم البحث

اقرأ أيضاً

In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. The purpose of this study is to deepen our understa nding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account neutral viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper II, the sensitivity of the RTI dynamics to collisional effects for different magnetic field configurations supporting the prominence thread is explored. This is done by artificially varying, or eliminating, effects of both elastic and inelastic collisions by modifying the model equations. We find that ionization and recombination reactions between ionized and neutral fluids, if in equilibrium prior to the onset of the instability, do not substantially impact the development of the primary RTI. However, such reactions can impact development of secondary structures during mixing of the cold prominence and hotter surrounding coronal material. We find that collisionality within and between ionized and neutral particle populations play an important role in both linear and non-linear development of RTI, with ion-neutral collision frequency as the primary determining factor in development or damping of small scale structures. We also observe that degree and signatures of flow decoupling between ion and neutral fluids can depend both on the inter-particle collisionality and the magnetic field configuration of the prominence thread.
96 - I. Ballai , B. Pinter , R. Oliver 2017
We investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and wavelength of waves propagating in the slab. To highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the evolution of the instability. Results are obtained in the limit of weak dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid approximations. We show that dissipative instabilities appear for flow speeds that are less than the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time. The present study improves our understanding of stability of solar prominences and the role of partial ionisation in destabilising the plasma. We show the necessity of two-fluid approximation when discussing the nature of instabilities: waves in a single fluid approximation show a great deal of stability.
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with format ion temperatures between log(T)=4.7-6.3, as well as their integrated intensities, are given. The line profiles are discussed. We pay special attention to the He II line which is blended with coronal lines. Our analysis confirms that depression in EUV lines can be interpreted by two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He II line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking on the coronal lines blended with the He II line. We estimate the contribution of the He II 256.32 line in the He II raster image to vary between ~44% and 70% of the rasters total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He II line are consistent with theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate for the central temperature of 8700 K, central pressure of 0.33 dyn/cm^2, and column mass of 2.5 10^{-4} g/cm^2. The corresponding theoretical hydrogen column density (10^{20} cm^{-2}) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 {AA}. The non-LTE calculations indicate that the He II 256.32 {AA} line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation.
Prominence threads are dense and cold structures lying on curved magnetic fields that can be suspended in the solar atmosphere against gravity. The gravitational stability of threads, in the absence of non-ideal effects, is comprehensively investigat ed in the present work by means of an elementary but effective model. Based on purely hydrodynamic equations in one spatial dimension and applying line-tying conditions at the footpoints of the magnetic field lines, we derive analytical expressions for the different feasible equilibria and the corresponding frequencies of oscillation. We find that the system allows for stable and unstable equilibrium solutions subject to the initial position of the thread, its density contrast and length, and the total length of the magnetic field lines. The transition between the two types of solutions is produced at specific bifurcation points that have been determined analytically in some particular cases. When the thread is initially at the top of the concave magnetic field, that is at the apex, we find a supercritical pitchfork bifurcation, while for a shifted initial thread position with respect to this point the symmetry is broken and the system is characterised by an S-shaped bifurcation. The plain results presented in this paper shed new light on the behaviour of threads in curved magnetic fields under the presence of gravity and help to interpret more complex numerical magnetohydrodynamics (MHD) simulations about similar structures.
Several mechanisms have been proposed to account for the formation of solar prominences or filaments, among which direct injection and evaporation-condensation models are the two most popular ones. In the direct injection model, cold plasma is ejecte d from the chromosphere into the corona along magnetic field lines; In the evaporation-condensation model, the cold chromospheric plasma is heated to over a million degrees and is evaporated into the corona, where the accumulated plasma finally reaches thermal instability or non-equilibrium so as to condensate to cold prominences. In this paper, we try to unify the two mechanisms: The essence of filament formation is the localized heating in the chromosphere. If the heating happens in the lower chromosphere, the enhanced gas pressure pushes the cold plasma in the upper chromosphere to move up to the corona, such a process is manifested as the direct injection model. If the heating happens in the upper chromosphere, the local plasma is heated to million degrees, and is evaporated into the corona. Later, the plasma condensates to form a prominence. Such a process is manifested as the evaporation-condensation model. With radiative hydrodynamic simulations we confirmed that the two widely accepted formation mechanisms of solar prominences can really be unified in such a single framework. A particular case is also found where both injection and evaporation-condensation processes occur together.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا