ﻻ يوجد ملخص باللغة العربية
There are extensive researches focusing on automated diabetic reti-nopathy (DR) detection from fundus images. However, the accuracy drop is ob-served when applying these models in real-world DR screening, where the fun-dus camera brands are different from the ones used to capture the training im-ages. How can we train a classification model on labeled fundus images ac-quired from only one camera brand, yet still achieves good performance on im-ages taken by other brands of cameras? In this paper, we quantitatively verify the impact of fundus camera brands related domain shift on the performance of DR classification models, from an experimental perspective. Further, we pro-pose camera-oriented residual-CycleGAN to mitigate the camera brand differ-ence by domain adaptation and achieve increased classification performance on target camera images. Extensive ablation experiments on both the EyePACS da-taset and a private dataset show that the camera brand difference can signifi-cantly impact the classification performance and prove that our proposed meth-od can effectively improve the model performance on the target domain. We have inferred and labeled the camera brand for each image in the EyePACS da-taset and will publicize the camera brand labels for further research on domain adaptation.
Diabetes is one of the most prevalent chronic diseases in Bangladesh, and as a result, Diabetic Retinopathy (DR) is widespread in the population. DR, an eye illness caused by diabetes, can lead to blindness if it is not identified and treated in its
Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Kochs Postulates, the foundation in evidence-based medic
Diabetic retinopathy (DR) screening is instrumental in preventing blindness, but faces a scaling challenge as the number of diabetic patients rises. Risk stratification for the development of DR may help optimize screening intervals to reduce costs w
This paper presents a multitask deep learning model to detect all the five stages of diabetic retinopathy (DR) consisting of no DR, mild DR, moderate DR, severe DR, and proliferate DR. This multitask model consists of one classification model and one
Diabetic Retinopathy is the leading cause of blindness in the working-age population of the world. The main aim of this paper is to improve the accuracy of Diabetic Retinopathy detection by implementing a shadow removal and color correction step as a