ترغب بنشر مسار تعليمي؟ اضغط هنا

Klein-Nishina effect and the cosmic ray electron spectrum

86   0   0.0 ( 0 )
 نشر من قبل Kun Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiative energy losses are very important in regulating the cosmic ray electron and/or positron (CRE) spectrum during their propagation in the Milky Way. Particularly, the Klein-Nishina (KN) effect of the inverse Compton scattering (ICS) results in less efficient energy losses of high-energy electrons, which is expected to leave imprints on the propagated electron spectrum. It has been proposed that the hardening of CRE spectra around 50 GeV observed by Fermi-LAT, AMS-02, and DAMPE could be due to the KN effect. We show in this work that the transition from the Thomson regime to the KN regime of the ICS is actually quite smooth compared with the approximate treatment adopted in some previous works. As a result, the observed spectral hardening of CREs cannot be explained by the KN effect. It means that an additional hardening of the primary electrons spectrum is needed. We also provide a parameterized form for the accurate calculation of the ICS energy-loss rate in a wide energy range.

قيم البحث

اقرأ أيضاً

Synchrotron radiation mechanism, when electrons are accelerated in a relativistic shock, is known to have serious problems to explain the observed gamma-ray spectrum below the peak for most Gamma-Ray Bursts (GRBs); the synchrotron spectrum below the peak is much softer than observed spectra. Recently, the possibility that electrons responsible for the radiation cool via Inverse Compton, but in the Klein-Nishina regime, has been proposed as a solution to this problem. We provide an analytical study of this effect and show that it leads to a hardening of the low energy spectrum but not by enough to make it consistent with the observed spectra for most GRBs (this is assuming that electrons are injected continuously over a time scale comparable to the dynamical time scale, as is expected for internal shocks of GRBs). In particular, we find that it is not possible to obtain a spectrum with alpha>-0.1 (f_{ u} propto u^{alpha}) whereas the typical observed value is alphasim0. Moreover, extreme values for a number of parameters are required in order that alphasim-0.1: the energy fraction in magnetic field needs to be less than about 10^{-4}, the thermal Lorentz factor of electrons should be larger than 10^6, and the radius where gamma-rays are produced should be not too far away from the deceleration radius. These difficulties suggest that the synchrotron radiation mechanism in internal shocks does not provide a self-consistent solution when alpha>-0.2.
96 - Philipp Mertsch 2018
Despite significant progress over more than 100 years, no accelerator has been unambiguously identified as the source of the locally measured flux of cosmic rays. High-energy electrons and positrons are of particular importance in the search for near by sources as radiative energy losses constrain their propagation to distances of about 1 kpc around 1 TeV. At the highest energies, the spectrum is therefore dominated and shaped by only a few sources whose properties can be inferred from the fine structure of the spectrum at energies currently accessed by experiments like AMS-02, CALET, DAMPE, Fermi-LAT, H.E.S.S. and ISS-CREAM. We present a stochastic model of the Galactic all-electron flux and evaluate its compatibility with the measurement recently presented by the H.E.S.S. collaboration. To this end, we have MC generated a large sample of the all-electron flux from an ensemble of random distributions of sources. We confirm the non-Gaussian nature of the probability density of fluxes at individual energies previously reported in analytical computations. For the first time, we also consider the correlations between the fluxes at different energies, treating the binned spectrum as a random vector and parametrising its joint distribution with the help of a pair-copula construction. We show that the spectral break observed in the all-electron spectrum by H.E.S.S. and DAMPE is statistically compatible with a distribution of astrophysical sources like supernova remnants or pulsars, but requires a rate smaller than the canonical supernova rate. This important result provides an astrophysical interpretation of the spectrum at TeV energies and allows differentiating astrophysical source models from exotic explanations, like dark matter annihilation. We also critically assess the reliability of using catalogues of known sources to model the electron-positron flux.
The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with the PAMELA detection of a rise in the positron fraction up to 100 GeV - motivated many interpretations in terms of dar k matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H.E.S.S. starting at 340 GeV. While the overall electron flux measured by H.E.S.S. is consistent with the ATIC data within statistical and systematic errors, the H.E.S.S. data exclude a pronounced peak in the electron spectrum as suggested for interpretation by ATIC. The H.E.S.S. data follow a power-law spectrum with spectral index of 3.0 +- 0.1 (stat.) +- 0.3 (syst.), which steepens at about 1 TeV.
The latest AMS-02 data on cosmic ray electrons show a break in the energy spectrum around 40 GeV, with a change in the slope of about 0.1. We perform a combined fit to the newest AMS-02 positron and electron flux data using a model which includes pro duction of pairs from pulsar wind nebulae (PWNe), electrons from supernova remnants (SNRs) and both species from spallation of hadronic cosmic rays with interstellar medium atoms. We demonstrate that the change of slope in the AMS-02 electron data is well explained by the interplay between the flux contributions from SNRs and from PWNe. In fact, the relative contribution to the data of these two populations changes by a factor of about 13 from 10 to 1000 GeV. The effect of the energy losses alone, when the inverse Compton scattering is properly computed within a fully numerical treatment of the Klein-Nishina cross section, cannot explain the break in the $e^-$ flux data, as recently proposed in the literature.
144 - S. Recchia , P. Blasi , G. Morlino 2017
Cosmic Rays escaping the Galaxy exert a force on the interstellar medium directed away from the Galactic disk. If this force is larger than the gravitational pull due to the mass embedded in the Galaxy, then galactic winds may be launched. Such outfl ows may have important implications for the history of star formation of the host galaxy, and in turn affect in a crucial way the transport of cosmic rays, both due to advection with the wind and to the excitation of waves by the same cosmic rays, through streaming instability. The possibility to launch cosmic ray induced winds and the properties of such winds depend on environmental conditions, such as the density and temperature of the plasma at the base of the wind and the gravitational potential, especially the one contributed by the dark matter halo. In this paper we make a critical assessment of the possibility to launch cosmic ray induced winds for a Milky-Way-like galaxy and how the properties of the wind depend upon the conditions at the base of the wind. Special attention is devoted to the implications of different conditions for wind launching on the spectrum of cosmic rays observed at different locations in the disc of the galaxy. We also comment on how cosmic ray induced winds compare with recent observations of Oxygen absorption lines in quasar spectra and emission lines from blank-sky, as measured by XMM-Newton/EPIC-MOS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا