ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistence of Topological Phases in Non-Hermitian Quantum Walks

95   0   0.0 ( 0 )
 نشر من قبل Vikash Mittal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discrete-time quantum walks are known to exhibit exotic topological states and phases. Physical realization of quantum walks in a noisy environment may destroy these phases. We investigate the behavior of topological states in quantum walks in the presence of a lossy environment. The environmental effects in the quantum walk dynamics are addressed using the non-Hermitian Hamiltonian approach. We show that the topological phases of the quantum walks are robust against moderate losses. The topological order in one-dimensional split-step quantum walk persists as long as the Hamiltonian is $mathcal{PT}$-symmetric. Although the topological nature persists in two-dimensional quantum walks as well, the $mathcal{PT}$-symmetry has no role to play there. Furthermore, we observe the noise-induced topological phase transition in two-dimensional quantum walks.



قيم البحث

اقرأ أيضاً

140 - Li-Wei Yu , Dong-Ling Deng 2020
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classi fy non-Hermitian topological phases based on diffusion maps, which are widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle, rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the on-site elements of the projective matrix as the input data. Our results provide a valuable guidance for future studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.
175 - S. Salimi , A. Sorouri 2009
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
138 - Martin Stefanak , Igor Jex 2016
We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast to the classical random walk there is no connection between the behaviour of persistence and the scaling of variance. In particular, we find that for a two-state quantum walks persistence follows an inverse power-law where the exponent is determined solely by the coin parameter. Moreover, for a one-parameter family of three-state quantum walks containing the Grover walk the scaling of persistence is given by two contributions. The first is the inverse power-law. The second contribution to the asymptotic behaviour of persistence is an exponential decay coming from the trapping nature of the studied family of quantum walks. In contrast to the two-state walks both the exponent of the inverse power-law and the decay constant of the exponential decay depend also on the initial coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the initial condition, ranging from purely exponential decay to purely inverse power-law behaviour.
72 - Li-Jun Lang , Shi-Liang Zhu , 2021
Nonlinearities in lattices with topologically nontrivial band structures can give rise to topological solitons, whose properties differ from both conventional lattice solitons and linear topological boundary states. We show that a Su-Schrieffer-Heege r-type lattice with both nonlinearity and nonreciprocal non-Hermiticity hosts a novel oscillatory soliton, which we call a topological end breather. The end breather is strongly localized to a self-induced topological domain near the end of the lattice, in sharp contrast to the extended topological solitons previously found in one-dimensional lattices. Its stable oscillatory dynamics can be interpreted as a Rabi oscillation between two self-induced topological boundary states, emerging from a combination of chiral lattice symmetry and the non-Hermitian skin effect. This demonstrates that non-Hermitian effects can give rise to a wider variety of topological solitons than was previously known to exist.
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamil tonian, the tight-binding model on the honeycomb lattice with imaginary on-site potentials is examined. Edge states with ReE=0 and their topological stability are discussed by the winding number and the index theorem, based on the pseudo-anti-Hermiticity of the system. As a higher symmetric generalization of SU(1,1) Hamiltonians, we also consider SO(3,2) models. We investigate non-Hermitian generalization of the Luttinger Hamiltonian on the square lattice, and that of the Kane-Mele model on the honeycomb lattice, respectively. Using the generalized Kramers theorem for the time-reversal operator Theta with Theta^2=+1 [M. Sato et al., arXiv:1106.1806], we introduce a time-reversal invariant Chern number from which topological stability of gapless edge modes is argued.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا