ﻻ يوجد ملخص باللغة العربية
Materials hosting magnetic skyrmions at room temperature could enable new computing architectures as well as compact and energetically efficient magnetic storage such as racetrack memories. In a racetrack device, information is coded by the presence/absence of magnetic skyrmions forming a chain that is moved through the device. The skyrmion Hall effect that would eventually lead to an annihilation of the skyrmions at the edges of the racetrack can be suppressed for example by anti-ferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances in the racetrack remains challenging. As a solution to this issue, a chain of bits could also be encoded by two different solitons such as a skyrmion and a chiral bobber. The major limitation of this approach is that it has solely been realized in B20-type single crystalline material systems that support skyrmions only at low temperatures, thus hindering the efficacy for future applications. Here we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature. By matching quantitative magnetic force microscopy data with micromagnetic simulations, we reveal that the two phases represent tubular skyrmions and partial skyrmions (similar to skyrmion bobbers). Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such multilayer systems may thus serve as a platform for designing skyrmion memory applications using distinct types of skyrmions and potentially for storing information using the vertical dimension in a thin film device.
We show that it is possible to engineer magnetic multi-domain configurations without domain walls in a prototypical rare earth/transition metal ferrimagnet using keV He+ ion bombardment. We additionally shown that these patterns display a particularl
An external off-resonant pumping is proposed as a tool to control the Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic layers with strong spin-orbit coupling. Combining theoretical analysis with numerical simulations for an $s$-$d$-like model
Soft X-ray magnetic vector tomography has been used to visualize with unprecedented detail and solely from experimental data the 3D magnetic configuration of a ferrimagnetic Gd12Co88/Nd17Co83/Gd24Co76 multilayer with competing anisotropy, exchange an
We have studied the effects of electrical current pulses on skyrmion formation in a series of Co/Ni/Pt-based multilayers. Transmission X-ray microscopy reveals that by applying electrical current pulses of duration and current density on the order of
Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive