ترغب بنشر مسار تعليمي؟ اضغط هنا

Research on Fitness Function of Two Evolution Algorithms Used for Neutron Spectrum Unfolding

64   0   0.0 ( 0 )
 نشر من قبل Rui Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When evolution algorithms are used to unfold the neutron energy spectrum, fitness function design is an important fundamental work for evaluating the quality of the solution, but it has not attracted much attention. In this work, we investigated the performance of eight fitness functions attached to the genetic algorithm (GA) and the differential evolution algorithm (DEA) used for unfolding four neutron spectra selected from the IAEA 403 report. Experiments show that the fitness functions with a maximum in the GA can limit the ability of the population to percept the fitness change, but the ability can be made up in the DEA. The fitness function with a feature penalty term helps to improve the performance of solutions, and the fitness function using the standard deviation and the Chi-squared result shows the balance between the algorithm and the spectra. The results also show that the DEA has good potential for neutron energy spectrum unfolding. The purposes of this work are to provide evidence for structuring and modifying the fitness functions and to suggest some genetic operations that should receive attention when using the fitness function to unfold neutron spectra.



قيم البحث

اقرأ أيضاً

In real-world applications, many optimization problems have the time-linkage property, that is, the objective function value relies on the current solution as well as the historical solutions. Although the rigorous theoretical analysis on evolutionar y algorithms has rapidly developed in recent two decades, it remains an open problem to theoretically understand the behaviors of evolutionary algorithms on time-linkage problems. This paper takes the first step to rigorously analyze evolutionary algorithms for time-linkage functions. Based on the basic OneMax function, we propose a time-linkage function where the first bit value of the last time step is integrated but has a different preference from the current first bit. We prove that with probability $1-o(1)$, randomized local search and $(1+1)$ EA cannot find the optimum, and with probability $1-o(1)$, $(mu+1)$ EA is able to reach the optimum.
The paper presents a solution for the problem of choosing a method for analytical determining of weight factors for a genetic algorithm additive fitness function. This algorithm is the basis for an evolutionary process, which forms a stable and effec tive query population in a search engine to obtain highly relevant results. The paper gives a formal description of an algorithm fitness function, which is a weighted sum of three heterogeneous criteria. The selected methods for analytical determining of weight factors are described in detail. It is noted that expert assessment methods are impossible to use. The authors present a research methodology using the experimental results from earlier in the discussed project Data Warehouse Support on the Base Intellectual Web Crawler and Evolutionary Model for Target Information Selection. There is a description of an initial dataset with data ranges for calculating weights. The calculation order is illustrated by examples. The research results in graphical form demonstrate the fitness function behavior during the genetic algorithm operation using various weighting options.
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, b oth players actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL-VTR based on the principle Optimism-in-Face-of-Uncertainty. Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally very efficient. Specifically, we show that Nash-UCRL-VTR can provably achieve an $tilde{O}(dHsqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To access the optimality of our algorithm, we also prove an $tilde{Omega}( dHsqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.
192 - Alexandre Chotard 2014
This paper analyses a $(1,lambda)$-Evolution Strategy, a randomised comparison-based adaptive search algorithm, on a simple constraint optimisation problem. The algorithm uses resampling to handle the constraint and optimizes a linear function with a linear constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using path length control. We exhibit for each case a Markov chain whose stability analysis would allow us to deduce the divergence of the algorithm depending on its internal parameters. We show divergence at a constant rate when the step-size is constant. We sketch that with step-size adaptation geometric divergence takes place. Our results complement previous studies where stability was assumed.
This paper extends the runtime analysis of non-elitist evolutionary algorithms (EAs) with fitness-proportionate selection from the simple OneMax function to the linear functions. Not only does our analysis cover a larger class of fitness functions, i t also holds for a wider range of mutation rates. We show that with overwhelmingly high probability, no linear function can be optimised in less than exponential time, assuming bitwise mutation rate $Theta(1/n)$ and population size $lambda=n^k$ for any constant $k>2$. In contrast to this negative result, we also show that for any linear function with polynomially bounded weights, the EA achieves a polynomial expected runtime if the mutation rate is reduced to $Theta(1/n^2)$ and the population size is sufficiently large. Furthermore, the EA with mutation rate $chi/n=Theta(1/n)$ and modest population size $lambda=Omega(ln n)$ optimises the scaled fitness function $e^{(chi+varepsilon)f(x)}$ for any linear function $f$ and any $varepsilon>0$ in expected time $O(nlambdalnlambda+n^2)$. These upper bounds also extend to some additively decomposed fitness functions, such as the Royal Road functions. We expect that the obtained results may be useful not only for the development of the theory of evolutionary algorithms, but also for biological applications, such as the directed evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا