ﻻ يوجد ملخص باللغة العربية
We investigate non-Hermitian degeneracies, also known as exceptional points, in continous elastic media, and their potential application to the detection of mass and stiffness perturbations. Degenerate states are induced by enforcing parity-time symmetry through tailored balanced gain and loss, introduced in the form of complex stiffnesses and may be implemented through piezoelectric transducers. Breaking of this symmetry caused by external perturbations leads to a splitting of the eigenvalues, which is explored as a sentitive approach to detection of such perturbations. Numerical simulations on one-dimensional waveguides illustrate the presence of several exceptional points in their vibrational spectrum, and conceptually demonstrate their sensitivity to point mass inclusions. Second order exceptional points are shown to exhibit a frequency shift in the spectrum with a square root dependence on the perturbed mass, which is confirmed by a perturbation approach and by frequency response predictions. Elastic domains supporting guided waves are then investigated, where exceptional points are formed by the hybridization of Lamb wave modes. After illustrating a similar sensitivity to point mass inclusions, we also show how these concepts can be applied to surface wave modes for sensing crack-type defects. The presented results describe fundamental vibrational properties of PT-symmetric elastic media supporting exceptional points, whose sensitivity to perturbations goes beyond the linear dependency commonly encountered in Hermitian systems. The findings are thus promising for applications involving sensing of perturbations such as added masses, stiffness discontinuities and surface cracks.
Standard exceptional points (EPs) are non-Hermitian degeneracies that occur in open systems. At an EP, the Taylor series expansion becomes singular and fails to converge -- a feature that was exploited for several applications. Here, we theoretically
We study the nature of an environment-induced exceptional point in a non-Hermitian pair of coupled mechanical oscillators. The mechanical oscillators are a pair of pillars carved out of a single isotropic elastodynamic medium made of aluminum and con
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
We present here how a coherent perfect absorber-laser (CPAL) enabled by parity-time ($mathcal{PT}$)-symmetry breaking may be exploited to build monochromatic amplifying devices for flexural waves. The fourth order partial differential equation govern
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po