ﻻ يوجد ملخص باللغة العربية
We study the validity of positivity bounds in the presence of a massless graviton, assuming the Regge behavior of the amplitude. Under this assumption, the problematic $t$-channel pole is canceled with the UV integral of the imaginary part of the amplitude in the dispersion relation, which gives rise to finite corrections to the positivity bounds. We find that low-energy effective field theories (EFT) with wrong sign are generically allowed. The allowed amount of the positivity violation is determined by the Regge behavior. This violation is suppressed by $M_{rm pl}^{-2}alpha$ where $alpha$ is the scale of Reggeization. This implies that the positivity bounds can be applied only when the cutoff scale of EFT is much lower than the scale of Reggeization. We then obtain the positivity bounds on scalar-tensor EFT at one-loop level. Implications of our results on the degenerate higher-order scalar-tensor (DHOST) theory are also discussed.
We derive the first positivity bounds for low-energy Effective Field Theories (EFTs) that are not invariant under Lorentz boosts. Positivity bounds are the low-energy manifestation of certain fundamental properties in the UV -- to date they have been
We derive constraints on scalar field theories coupled to gravity by using recently developed positivity bounds in the presence of gravity. It is found that a canonically-normalized real scalar cannot have an arbitrarily flat potential unless some ne
We apply positivity bounds directly to a $U(1)$ gauge theory with charged scalars and charged fermions, i.e. QED, minimally coupled to gravity. Assuming that the massless $t$-channel pole may be discarded, we show that the improved positivity bounds
Positivity bounds - constraints on any low-energy effective field theory imposed by the fundamental axioms of unitarity, causality and locality in the UV - have recently been used to constrain scalar-tensor theories of dark energy. However, the coupl
We derive new positivity bounds for scattering amplitudes in theories with a massless graviton in the spectrum in four spacetime dimensions, of relevance for the weak gravity conjecture and modified gravity theories. The bounds imply that extremal bl