ترغب بنشر مسار تعليمي؟ اضغط هنا

Strangeonium-like hybrids on the lattice

110   0   0.0 ( 0 )
 نشر من قبل Ying Chen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The strangeonium-like $sbar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $sbar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions. In each of the $(1,2)^{-+}$ channels, the masses and the BS wave functions are reliably derived. The $1^{-+}$ ground state mass is around 2.1-2.2 GeV, and that of $2^{-+}$ is around 2.3-2.4 GeV, while the masses of the first excited states are roughly 1.4 GeV higher. This mass splitting is much larger than the expectation of the phenomenological flux-tube model or constituent gluon model for hybrids, which is usually a few hundred MeV. The BS wave functions with respect to $r$ show clear radial nodal structures of non-relativistic two-body system, which imply that $r$ is a meaningful dynamical variable for these hybrids and motivate a color halo picture of hybrids that the color octet $sbar{s}$ is surrounded by gluonic degrees of freedom. In the $1^{--}$ channel, the properties of the lowest two states comply with those of $phi(1020)$ and $phi(1680)$. We have not obtained convincing information relevant to $phi(2170)$ yet, however, we argue that whether $phi(2170)$ is a conventional $sbar{s}$ meson or a $sbar{s}g$ hybrid within the color halo scenario, the ratio of partial decay widths $Gamma(phi eta)$ and $Gamma (phi eta)$ observed by BESIII can be understood by the mechanism of hadronic transition of a strangeonium-like meson along with the $eta-eta$ mixing.



قيم البحث

اقرأ أيضاً

We report the first lattice quantum chromodynamics (QCD) study of deuteron($np$)-like dibaryons with heavy quark flavours. These include particles with following dibaryon structures and valence quark contents: $Sigma_cXi_{cc} (uucucc)$, $Omega_cOmega _{cc} (sscscc)$, $Sigma_bXi_{bb} (uububb)$, $Omega_bOmega_{bb} (ssbsbb)$ and $Omega_{ccb}Omega_{cbb} (ccbcbb)$, and with spin ($J$)-parity ($P$), $J^{P} equiv 1^{+}$. Using a state-of-the art lattice QCD calculation, after controlling relevant systematic errors, we unambiguously find that the ground state masses of dibaryons $Omega_cOmega_{cc} (sscscc)$, $Omega_bOmega_{bb} (ssbsbb)$ and $Omega_{ccb}Omega_{cbb} (ccbcbb)$ are below their respective two-baryon thresholds, suggesting the presence of bound states which are stable under strong and electromagnetic interactions. We also predict their masses precisely. For dibaryons $Sigma_cXi_{cc} (uucucc)$, and $Sigma_bXi_{bb} (uububb)$, we could not reach to a definitive conclusion about the presence of any bound state due to large systematics associated with these states. We also find that the binding of these dibaryons becomes stronger as they become heavier in mass. This study also opens up the possibility of the existence of many other exotic nuclei, which can be formed through the fusion of heavy baryons, similar to the formation of nuclei of elements in the Periodic Table.
We study the question of whether or not QCD predicts a pentaquark state. We use the improved, fixed point lattice QCD action which has very little sensitivity to the lattice spacing and also allows us to reach light quark masses. The analysis was per formed on a single volume of size $(1.8 {rm fm})^3times 3.6 {rm fm}$ with lattice spacing of $a=0.102$ fm. We use the correlation matrix method to identify the ground and excited states in the isospin 0, negative parity channel. In the quenched approximation where dynamical quark effects are omitted, we do not find any evidence for a pentaquark resonance in QCD.
We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric $SU(3)$ gauge theory with three fundamental Wil son quarks by twisting quark boundary conditions in a compact direction ($Z_3$-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 16^3 x 4 and 20^3 x 4 lattices along the line of constant physics realizing $m_{PS}/m_{V}=0.70$. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the high-temperature phase. These results are consistent with the predictions based on the chiral effective model in the literature. Our approach could provide novel insights to the nonperturbative connection between the center and chiral properties.
We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form factors $G^c_{E,M}(Q^2)$ in the momentum transfer range $0leq Q^2 leq 1.4$ $rm GeV^2$. The quark mass dependence, finite lattice spacing and volume corrections are taken into account simultaneously based on the calculation on three gauge ensembles including one at the physical pion mass. The nonzero value of the charm magnetic moment $mu^c_M=-0.00127(38)_{rm stat}(5)_{rm sys}$, as well as the Pauli form factor, reflects a nontrivial role of the charm sea in the nucleon spin structure. The nonzero $G^c_{E}(Q^2)$ indicates the existence of a nonvanishing asymmetric charm-anticharm sea in the nucleon. Performing a nonperturbative analysis based on holographic QCD and the generalized Veneziano model, we study the constraints on the $[c(x)-bar{c}(x)]$ distribution from the lattice QCD results presented here. Our results provide complementary information and motivation for more detailed studies of physical observables that are sensitive to intrinsic charm and for future global analyses of parton distributions including asymmetric charm-anticharm distribution.
We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z in {2.2, 2.6, 3.0}$~GeV on t he lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution with combined statistical and systematic errors is in agreement with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $Delta bar{u}(x)>Delta bar{d}(x)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا