ﻻ يوجد ملخص باللغة العربية
The tight connection between mass and energy unveiled by Special Relativity, summarized by the iconic formula $E = mc^2$, has revolutionized our understanding of nature and even shaped our political world over the past century through its military application. It is certainly one of the most exhaustively-tested and well-known equations of modern science. Although we have become used to its most obvious implication -- mass-energy equivalence --, it is surprising that one of its subtle -- yet, inevitable -- consequences is still a matter of confusion: the so-called hidden momentum. Often considered as a peculiar feature of specific systems or as an artifact to avoid paradoxal situations, here we present a new relativistic paradox which exposes the true nature and ubiquity of hidden momentum. We also show that hidden momentum can be forced to reveal itself through observable effects, hopefully putting an end to decades of controversy about its reality.
Relativistic kinematics is usually considered only as a manifestation of pseudo-Euclidean (Lorentzian) geometry of space-time. However, as it is explicitly stated in General Relativity, the geometry itself depends on dynamics, specifically, on the en
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not rando
Which non-local hidden variables could complement the description of physical reality? The present model of extended Newtonian dynamics (MEND) is generalize but not alternative to Newtonian Dynamics because its extended Newtonian Dynamics to arbitrar
Newtonian physics is describes macro-objects sufficiently well, however it does not describe microobjects. A model of Extended Mechanics for Quantum Theory is based on an axiomatic generalization of Newtonian classical laws to arbitrary reference fra
Recently BESIII collaboration discovered a charged strange hidden-charm state $Z_{cs}$(3985) in the $D_s^-D^{*0} + D_s^{*-}D^{0}$ spectrum. A higher $Z_{cs}$ state coupling to $bar{D}_s^{*-}D^{*0}$ is expected by SU(3)-flavor symmetry, and their bott