ترغب بنشر مسار تعليمي؟ اضغط هنا

MLaaS4HEP: Machine Learning as a Service for HEP

64   0   0.0 ( 0 )
 نشر من قبل Valentin Kuznetsov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine Learning (ML) will play a significant role in the success of the upcoming High-Luminosity LHC (HL-LHC) program at CERN. An unprecedented amount of data at the exascale will be collected by LHC experiments in the next decade, and this effort will require novel approaches to train and use ML models. In this paper, we discuss a Machine Learning as a Service pipeline for HEP (MLaaS4HEP) which provides three independent layers: a data streaming layer to read High-Energy Physics (HEP) data in their native ROOT data format; a data training layer to train ML models using distributed ROOT files; a data inference layer to serve predictions using pre-trained ML models via HTTP protocol. Such modular design opens up the possibility to train data at large scale by reading ROOT files from remote storage facilities, e.g. World-Wide LHC Computing Grid (WLCG) infrastructure, and feed the data to the users favorite ML framework. The inference layer implemented as TensorFlow as a Service (TFaaS) may provide an easy access to pre-trained ML models in existing infrastructure and applications inside or outside of the HEP domain. In particular, we demonstrate the usage of the MLaaS4HEP architecture for a physics use-case, namely the $tbar{t}$ Higgs analysis in CMS originally performed using custom made Ntuples. We provide details on the training of the ML model using distributed ROOT files, discuss the performance of the MLaaS and TFaaS approaches for the selected physics analysis, and compare the results with traditional methods.



قيم البحث

اقرأ أيضاً

Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASAs Solar Dynamics Observatory, is to study the origin of solar va riability and characterize the Suns magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the Web based on HMIs data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and categorize solar flares into four classes, namely B, C, M, X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the Internet.
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms i n particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. We demonstrate that the acceleration of machine learning inference as a web service represents a heterogeneous computing solution for particle physics experiments that potentially requires minimal modification to the current computing model. As examples, we retrain the ResNet-50 convolutional neural network to demonstrate state-of-the-art performance for top quark jet tagging at the LHC and apply a ResNet-50 model with transfer learning for neutrino event classification. Using Project Brainwave by Microsoft to accelerate the ResNet-50 image classification model, we achieve average inference times of 60 (10) milliseconds with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service, representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU inference in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600--700 inferences per second using an image batch of one, comparable to large batch-size GPU throughput and significantly better than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model, coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.
Big data analytics is gaining massive momentum in the last few years. Applying machine learning models to big data has become an implicit requirement or an expectation for most analysis tasks, especially on high-stakes applications.Typical applicatio ns include sentiment analysis against reviews for analyzing on-line products, image classification in food logging applications for monitoring users daily intake and stock movement prediction. Extending traditional database systems to support the above analysis is intriguing but challenging. First, it is almost impossible to implement all machine learning models in the database engines. Second, expertise knowledge is required to optimize the training and inference procedures in terms of efficiency and effectiveness, which imposes heavy burden on the system users. In this paper, we develop and present a system, called Rafiki, to provide the training and inference service of machine learning models, and facilitate complex analytics on top of cloud platforms. Rafiki provides distributed hyper-parameter tuning for the training service, and online ensemble modeling for the inference service which trades off between latency and accuracy. Experimental results confirm the efficiency, effectiveness, scalability and usability of Rafiki.
Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program serves individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP
We present CutLang, an analysis description language and runtime interpreter for high energy collider physics data analyses. An analysis description language is a declerative domain specific language that can express all elements of a data analysis i n an easy and unambiguous way. A full-fledged human readable analysis description language, incorporating logical and mathematical expressions, would eliminate many programming difficulties and errors, consequently allowing the scientist to focus on the goal, but not on the tool. In this paper, we discuss the guiding principles and scope of the CutLang language, implementation of the CutLang runtime interpreter and the CutLang framework, and demonstrate an example of top pair reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا