ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic modeling of multiphase flow based on simplified Enskog equation

64   0   0.0 ( 0 )
 نشر من قبل Aiguo Xu Prof. Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new kinetic model for multiphase flow was presented under the framework of the discrete Boltzmann method (DBM). Significantly different from the previous DBM, a bottom-up approach was adopted in this model. The effects of molecular size and repulsion potential were described by the Enskog collision model; the attraction potential was obtained through the mean-field approximation method. The molecular interactions, which result in the non-ideal equation of state and surface tension, were directly introduced as an external force term. Several typical benchmark problems, including Couette flow, two-phase coexistence curve, the Laplace law, phase separation, and the collision of two droplets, were simulated to verify the model. Especially, for two types of droplet collisions, the strengths of two non-equilibrium effects, $bar{D}_2^*$ and $bar{D}_3^*$, defined through the second and third order non-conserved kinetic moments of $(f - f ^{eq})$, are comparatively investigated, where $f$ ($f^{eq}$) is the (equilibrium) distribution function. It is interesting to find that during the collision process, $bar{D}_2^*$ is always significantly larger than $bar{D}_3^*$, $bar{D}_2^*$ can be used to identify the different stages of the collision process and to distinguish different types of collisions. The modeling method can be directly extended to a higher-order model for the case where the non-equilibrium effect is strong, and the linear constitutive law of viscous stress is no longer valid.

قيم البحث

اقرأ أيضاً

The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas dis tribution function using particle velocity characteristic line, flux contains more detailed information of fluid flow and more concrete physical nature. In this work, a simplified DUGKS is proposed with reconstruction stage on a whole time step instead of half time step in original DUGKS. Using temporal/spatial integral Boltzmann Bhatnagar-Gross-Krook (BGK) equation, the transformed distribution function with inclusion of collision effect is constructed. The macro and mesoscopic fluxes of the cell on next time step is predicted by reconstruction of transformed distribution function at interfaces along particle velocity characteristic lines. According to the conservation law, the macroscopic variables of the cell on next time step can be updated through its macroscopic flux. Equilibrium distribution function on next time step can also be updated. Gas distribution function is updated by FV scheme through its predicted mesoscopic flux in a time step. Compared with the original DUGKS, the computational process of the proposed method is more concise because of the omission of half time step flux calculation. Numerical time step is only limited by the Courant-Friedrichs-Lewy (CFL) condition and relatively good stability has been preserved. Several test cases, including the Couette flow, lid-driven cavity flow, laminar flows over a flat plate, a circular cylinder, and an airfoil, as well as micro cavity flow cases are conducted to validate present scheme. The numerical simulation results agree well with the references results.
Reduced Order Modeling (ROM) for engineering applications has been a major research focus in the past few decades due to the unprecedented physical insight into turbulence offered by high-fidelity CFD. The primary goal of a ROM is to model the key ph ysics/features of a flow-field without computing the full Navier-Stokes (NS) equations. This is accomplished by projecting the high-dimensional dynamics to a low-dimensional subspace, typically utilizing dimensionality reduction techniques like Proper Orthogonal Decomposition (POD), coupled with Galerkin projection. In this work, we demonstrate a deep learning based approach to build a ROM using the POD basis of canonical DNS datasets, for turbulent flow control applications. We find that a type of Recurrent Neural Network, the Long Short Term Memory (LSTM) which has been primarily utilized for problems like speech modeling and language translation, shows attractive potential in modeling temporal dynamics of turbulence. Additionally, we introduce the Hurst Exponent as a tool to study LSTM behavior for non-stationary data, and uncover useful characteristics that may aid ROM development for a variety of applications.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or der hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
Current multi-component, multiphase pseudo-potential lattice Boltzmann models have thermodynamic inconsistencies that prevent them to correctly predict the thermodynamic phase behavior of partially miscible multi-component mixtures, such as hydrocarb on mixtures. This paper identifies these inconsistencies and attempts to design a thermodynamically consistent multi-component, multiphase pseudo-potential lattice Boltzmann model that allows mass transfer across the phase interfaces and is capable to predict the phase behavior of typically partially miscible hydrocarbon mixtures. The designed model defines the total interaction force for the entire phase and split the force into individual components. Through a properly derived force split factor associated with the volatility of each component, the model can achieve precise thermodynamic consistency in multi-component hydrocarbon mixtures, which is described by the iso-fugacity rule.
In this paper, an efficient high-order gas-kinetic scheme (EHGKS) is proposed to solve the Euler equations for compressible flows. We re-investigate the underlying mechanism of the high-order gas-kinetic scheme (HGKS) and find a new strategy to impro ve its efficiency. The main idea of the new scheme contains two parts. Firstly, inspired by the state-of-art simplifications on the third-order HGKS, we extend the HGKS to the case of arbitrary high-order accuracy and eliminate its unnecessary high-order dissipation terms. Secondly, instead of computing the derivatives of particle distribution function and their complex moments, we introduce a Lax-Wendroff procedure to compute the high-order derivatives of macroscopic quantities directly. The new scheme takes advantage of both HGKS and the Lax-Wendroff procedure, so that it can be easily extended to the case of arbitrary high-order accuracy with practical significance. Typical numerical tests are carried out by EHGKS, with the third, fifth and seventh-order accuracy. The presence of good resolution on the discontinuities and flow details, together with the optimal CFL numbers, validates the high accuracy and strong robustness of EHGKS. To compare the efficiency, we present the results computed by the EHGKS, the original HGKS and Runge-Kutta-WENO-GKS. This further demonstrates the advantages of EHGKS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا