ﻻ يوجد ملخص باللغة العربية
We fit the observed high ionisation X-ray absorption lines in the neutron star binary GX13+1 with a full simulation of a thermal-radiative wind. This uses a radiation hydrodynamic code coupled to Monte Carlo radiation transfer to compute the observed line profiles from Hydrogen and Helium-like iron and Nickel, including all strong K{alpha} and K{beta} transitions. The wind is very strong as this object has a very large disc and is very luminous. The absorption lines from Fe K{alpha} are strongly saturated as the ion columns are large, so the line equivalent widths (EWs) depend sensitively on the velocity structure. We additionally simulate the lines including isotropic turbulence at the level of the azimuthal and radial velocities. We fit these models to the Fe xxv and xxvi absorption lines seen in the highest resolution Chandra third order HETGS data. These data already rule out the addition of turbulence at the level of the radial velocity of ~500 km/s. The velocity structure predicted by the thermal-radiative wind alone is a fairly good match to the observed profile, with an upper limit to additional turbulence at the level of the azimuthal velocity of ~100 km/s. This gives stringent constraints on any remaining contribution from magnetic acceleration.
We present the analysis of seven emph{Chandra} High Energy Transmission Grating Spectrometer and six simultaneous emph{RXTE} Proportional Counter Array observations of the persistent neutron star (NS) low-mass X-ray binary GX 13+1 on its normal and h
Using the High Resolution Camera onboard the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron-star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position we have
We have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data. The new position significantly differs from a previously published Chandra po
We present a spectral analysis of a brief Chandra/HETG observation of the neutron star low-mass X-ray binary GX~340+0. The high-resolution spectrum reveals evidence of ionized absorption in the Fe K band. The strongest feature, an absorption line at
We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are