ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of antiferromagnetic skyrmion in absence and presence of pinning defect

480   0   0.0 ( 0 )
 نشر من قبل Minghui Qin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theoretical study on the dynamics of an antiferromagnetic (AFM) skyrmion is indispensable for revealing the underlying physics and understanding the numerical and experimental observations. In this work, we present a reliable theoretical treatment of the spin current induced motion of an AFM skyrmion in the absence and presence of pinning defect. For an ideal AFM system free of defect, the skyrmion motion velocity as a function of the intrinsic parameters can be derived, based on the concept that the skyrmion profile agrees well with the 360 domain wall formula, leading to an explicit description of the skyrmion dynamics. However, for an AFM lattice containing a defect, the skyrmion can be pinned and the depinning field as a function of damping constant and pinning strength can be described by the Thiele approach. It is revealed that the depinning behavior can be remarkably influenced by the time dependent oscillation of the skyrmion trajectory. The present theory provides a comprehensive scenario for manipulating the dynamics of AFM skyrmion, informative for future spintronic applications based on antiferromagnets.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Similar behavior is seen for spin-torques due to in-plane currents and the spin Hall effect, where a pinning regime can be identified at low currents with a transition towards the disorder-free case at higher currents, similar to domain wall motion in disordered films. Moreover, a current-dependent skyrmion Hall effect and fluctuations in the core radius are found, which result from the interaction with the pinning potential.
Quantization of topological charges determines the various topological spin textures that are expected to play a key role in future spintronic devices. While the magnetic skyrmion with a unit topological charge Q has been extensively studied, spin te xtures with other integer valued have not been verified well so far. Here, we report the real-space image, creation, and manipulation of a type of multi Q three-dimensional skyrmionic texture, where a circular spin spiral ties a bunch of skyrmion tubes. We define these objects as skyrmion bundles, and show they have arbitrarily integer values Q from negative up to at least 55 in our experiment. These textures behave as quasiparticles in dynamics for the collective motions driven by electric pulses. Similar to the skyrmion, skyrmion bundles with non zero Q exhibit the skyrmion Hall effects with a Hall angle of 62 degree. Of particular interest, the skyrmion bundle with Q = 0 propagates collinearly with respect to the current flow without the skyrmion Hall effect. Our results open a new perspective for possible applications of multi Q magnetic objects in future spintronic devices.
We report on experiments demonstrating coherent control of magnon spin transport and pseudospin dynamics in a thin film of the antiferromagnetic insulator hematite utilizing two Pt strips for all-electrical magnon injection and detection. The measure d magnon spin signal at the detector reveals an oscillation of its polarity as a function of the externally applied magnetic field. We quantitatively explain our experiments in terms of diffusive magnon transport and a coherent precession of the magnon pseudospin caused by the easy-plane anisotropy and the Dzyaloshinskii-Moriya interaction. This experimental observation can be viewed as the magnonic analogue of the electronic Hanle effect and the Datta-Das transistor, unlocking the high potential of antiferromagnetic magnonics towards the realization of rich electronics-inspired phenomena.
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velo city depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا