ترغب بنشر مسار تعليمي؟ اضغط هنا

Harvesting Energy from Sun, Outer Space, and Soil

73   0   0.0 ( 0 )
 نشر من قبل Yi Zheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While solar power systems have offered a wide variety of electricity generation approaches including photovoltaics, solar thermal power systems, and solar thermoelectric generators, the ability of generating electricity at both the daytime and nighttime with no necessity of energy storage still remains challenging. Here, we propose and verify a strategy of harvesting solar energy by solar heating during the daytime and harnessing the coldness of the outer space through radiative cooling to produce electricity at night using a commercial thermoelectric module. It enables electricity generation for 24 hours a day. We experimentally demonstrate a peak power density of 37 mW/m2 at night and a peak value of 723 mW/m2 during the daytime. A theoretical model that accurately predicts the performance of the device is developed and validated. The feature of 24-hour electricity generation shows great potential energy applications of off-grid and battery-free lighting and sensing.



قيم البحث

اقرأ أيضاً

Energy harvesting from sun and outer space using thermoradiative devices (TRD), despite being promising renewable energy sources, are limited only to daytime and nighttime period, respectively. A system with 24-hour continuous energy generation remai ns an open question thus far. Here, we propose a TRD-based power generator that harvests solar energy via concentrated solar irradiation during daytime and via thermal infrared emission towards the outer space at nighttime, thus achieving the much sought-after 24-hour electrical power generation. We develop a rigorous thermodynamical model to investigate the performance characteristics, parametric optimum design, and the role of various energy loss mechanisms. Our model predicts that the TRD-based system yields a peak efficiency of 12.6% at daytime and a maximum power density of 10.8 Wm$^{-2}$ at nighttime, thus significantly outperforming the state-of-art record-setting thermoelectric generator. These findings reveal the potential of TRD towards 24-hour electricity generation and future renewable energy technology.
206 - Xianze Ao , Bowen Li , Bin Zhao 2020
The sun (~6000 K) and outer space (~3 K) are the original heat source and sink for human beings on Earth. The energy applications of absorbing solar irradiation and harvesting the coldness of outer space for energy utilization have attracted consider able interest from researchers. However, combining these two functions in a static device for continuous energy harvesting is unachievable due to the intrinsic infrared spectral conflict. In this study, we developed spectral self-adaptive absorber/emitter (SSA/E) for daytime photothermal and nighttime radiative sky cooling modes depending on the phase transition of the vanadium dioxide coated layer. A 24-hour day-night test showed that the fabricated SSA/E has continuous energy harvesting ability and improved overall energy utilization performance, thus showing remarkable potential in future energy applications.
This work demonstrates preliminary results on energy harvesting from a linearly stable flutter-type system with circulatory friction forces. Harmonic external forcing is applied to study the energy flow in the steady sliding configuration. In certain parameter ranges negative excitation work is observed where the external forcing allows to pull part of the friction energy out of the system and thus makes energy harvesting possible. Studies reveal that this behavior is largely independent of the flutter point and thus that it is primarily controlled by the excitation. Contrary to existing energy harvesting approaches for such systems, this approach uses external forcing in the linearly stable regime of the oscillator which allows to control vibrations and harvest energy on demand.
Optical properties of core-shell-shell Au@SiO2@Au nanostructures and their solar energy harvesting applications are theoretically investigated using Mie theory and heat transfer equations. The theoretical analysis associated with size-dependent modif ication of the bulk gold dielectric function agrees well with previous experimental results. We use the appropriate absorption cross-section to determine the solar energy absorption efficiency of the nano-heterostructures, which is strongly structure-dependent, and to predict the time-dependent temperature increase of the nanoshell solution under simulated solar irradiation. Comparisons to prior temperature measurements and theoretical evaluation of the solar power conversion efficiency are discussed to provide new insights into underlying mechanisms. Our approach would accelerate materials and structure testing in solar energy harvesting.
Wearable thermoelectric devices show promises to generate electricity in a ubiquitous, unintermittent and noiseless way for on-body applications. Three-dimensional thermoelectric textiles (TETs) outperform other types in smart textiles owing to their out-of-plane thermoelectric generation and good structural conformability with fabrics. Yet, there has been lack of efficient strategies in scalable manufacture of TETs for sustainably powering electronics. Here, we fabricate organic spacer fabric shaped TETs by knitting carbon nanotube yarn based segmented thermoelectric yarn in large scale. Combing finite element analysis with experimental evaluation, we elucidate that the fabric structure significantly influences the power generation. The optimally designed TET with good wearability and stability shows high output power density of 51.5 mW/m2 and high specific power of 173.3 uW/(g.K) at delta T= 47.5 K. The promising on-body applications of the TET in directly and continuously powering electronics for healthcare and environmental monitoring is fully demonstrated. This work will broaden the research vision and provide new routines for developing high-performance and large-scale TETs toward practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا