ﻻ يوجد ملخص باللغة العربية
The center of mass of an operator $A$ (denoted St($A$), and called in this paper as the {em Stampfli point} of A) was introduced by Stampfli in his Pacific J. Math (1970) paper as the unique $lambdainmathbb C$ delivering the minimum value of the norm of $A-lambda I$. We derive some results concerning the location of St($A$) for several classes of operators, including 2-by-2 block operator matrices with scalar diagonal blocks and 3-by-3 matrices with repeated eigenvalues. We also show that for almost normal $A$ its Stampfli point lies in the convex hull of the spectrum, which is not the case in general. Some relations between the property St($A$)=0 and Roberts orthogonality of $A$ to the identity operator are established.
The higher rank numerical ranges of generic matrices are described in terms of the components of their Kippenhahn curves. Cases of tridiagonal (in particular, reciprocal) 2-periodic matrices are treated in more detail.
For $alpha > 0$ we consider the operator $K_alpha colon ell^2 to ell^2$ corresponding to the matrix [left(frac{(nm)^{-frac{1}{2}+alpha}}{[max(n,m)]^{2alpha}}right)_{n,m=1}^infty.] By interpreting $K_alpha$ as the inverse of an unbounded Jacobi matrix
Tridiagonal matrices with constant main diagonal and reciprocal pairs of off-diagonal entries are considered. Conditions for such matrices with sizes up to 6-by-6 to have elliptical numerical ranges are obtained.
In this paper we {em discuss} diverse aspects of mutual relationship between adjoints and formal adjoints of unbounded operators bearing a matrix structure. We emphasize on the behaviour of row and column operators as they turn out to be the germs of
We review some history and some recent results concerning Toeplitz determinants and their applications. We discuss, in particular, the crucial role of the two-dimensional Ising model in stimulating the development of the theory of Toeplitz determinants.