ﻻ يوجد ملخص باللغة العربية
We explain how the axioms of Conformal Field Theory are used to make predictions about critical exponents of continuous phase transitions in three dimensions, via a procedure called the conformal bootstrap. The method assumes conformal invariance of correlation functions, and imposes some relations between correlation functions of different orders. Numerical analysis shows that these conditions are incompatible unless the critical exponents take particular values, or more precisely that they must belong to a small island in the parameter space.
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current -- a non-conserved vector operator of dimension exactly $(d-1)$, whose diver
We study the Ising model two-point diagonal correlation function $ C(N,N)$ by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this exp
We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi