ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Ising Model: a view from the Conformal Bootstrap Island

75   0   0.0 ( 0 )
 نشر من قبل Slava Rychkov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Slava Rychkov




اسأل ChatGPT حول البحث

We explain how the axioms of Conformal Field Theory are used to make predictions about critical exponents of continuous phase transitions in three dimensions, via a procedure called the conformal bootstrap. The method assumes conformal invariance of correlation functions, and imposes some relations between correlation functions of different orders. Numerical analysis shows that these conditions are incompatible unless the critical exponents take particular values, or more precisely that they must belong to a small island in the parameter space.



قيم البحث

اقرأ أيضاً

We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current -- a non-conserved vector operator of dimension exactly $(d-1)$, whose diver gence expresses the trace of the stress tensor. We point out that this scenario can be probed via lattice Monte Carlo simulations, using the critical 3d Ising model as an example. Our results put a lower bound $Delta_V>5.0$ on the scaling dimension of the lowest virial current candidate $V$, well above 2 expected for the true virial current. This implies that the critical 3d Ising model has no virial current, providing a structural explanation for the conformal invariance of the model.
We study the Ising model two-point diagonal correlation function $ C(N,N)$ by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this exp ansion, weighting, by powers of a variable $lambda$, the $j$-particle contributions, $ f^{(j)}_{N,N}$. The corresponding $ lambda$ extension of the two-point diagonal correlation function, $ C(N,N; lambda)$, is shown, for arbitrary $lambda$, to be a solution of the sigma form of the Painlev{e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors $ f^{(j)}_{N,N}$ are obtained and shown to have both a ``Russian doll nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral $ E$. Each $ f^{(j)}_{N,N}$ is expressed polynomially in terms of the elliptic integrals $ E$ and $ K$. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll structure. The previous $ lambda$-extensions, $ C(N,N; lambda)$ are, for singled-out values $ lambda= cos(pi m/n)$ ($m, n$ integers), also solutions of linear differential equations. These solutions of Painleve VI are actually algebraic functions, being associated with modular curves.
We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula tions have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150000 CPU hours on computer clusters. For $chi^{(5)}$ 10000 terms of the series are calculated {it modulo} a single prime, and have been used to find the linear ODE satisfied by $chi^{(5)}$ {it modulo} a prime. A diff-Pade analysis of 2000 terms series for $chi^{(5)}$ and $chi^{(6)}$ confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the $n$-particle components of the susceptibility, up to a small set of ``additional singularities. We find the presence of singularities at $w=1/2$ for the linear ODE of $chi^{(5)}$, and $w^2= 1/8$ for the ODE of $chi^{(6)}$, which are {it not} singularities of the ``physical $chi^{(5)}$ and $chi^{(6)},$ that is to say the series-solutions of the ODEs which are analytic at $w =0$. Furthermore, analysis of the long series for $chi^{(5)}$ (and $chi^{(6)}$) combined with the corresponding long series for the full susceptibility $chi$ yields previously conjectured singularities in some $chi^{(n)}$, $n ge 7$. We also present a mechanism of resummation of the logarithmic singularities of the $chi^{(n)}$ leading to the known power-law critical behaviour occurring in the full $chi$, and perform a power spectrum analysis giving strong arguments in favor of the existence of a natural boundary for the full susceptibility $chi$.
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi cient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the depleted series $Phi^{(6)}=tilde{chi}^{(6)} - {2 over 3} tilde{chi}^{(4)} + {2 over 45} tilde{chi}^{(2)}$. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The depleted differential operator is shown to have a structure similar to the corresponding operator for $tilde{chi}^{(5)}$. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral $E$. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا