ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars

94   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than $10^{-8}$. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711-6830, the Crab pulsar and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives.

قيم البحث

اقرأ أيضاً

Neutron stars spin down over time due to a number of energy-loss processes. We provide tantalizing population-based evidence that millisecond pulsars (MSPs) have a minimum ellipticity of $epsilonapprox10^{-9}$ around their spin axis and that, consequ ently, some spin down mostly through gravitational-wave emission. We discuss the implications of such a minimum ellipticity in terms of the internal magnetic field strengths and nuclear matter composition of neutron stars and show it would result in the Advanced LIGO and Virgo gravitational-wave detectors, or their upgrades, detecting gravitational waves from some known MSPs in the near future.
A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of non-steady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases considering the drastic variation of the accretion rate and the standard disk-magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.
Gravitational waves (GW) produced in the early Universe contribute to the number of relativistic degrees of freedom, $N_{rm eff}$, during Big Bang Nucleosynthesis (BBN). By using the constraints on $N_{rm eff}$, we present a new bound on how much the Universe could have expanded between horizon exit of the largest observable scales today and the end of inflation. We discuss the implications on inflationary models and show how the new constraints affect model selection. We also discuss the sensitivities of the current and planned GW observatories such as LIGO and LISA, and show that the constraints they could impose are always less stringent than the BBN bound.
We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, w e find four different compact star solutions: traditional neutron stars, strange quark stars, as well as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2 and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top of a nuclear matter core. For all types of stars constructed, we determine not only their mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of inertia and the mass distribution. We find that there exists a range of parameter values in our model, for which the novel hybrid stars have properties in very good agreement with all existing bounds on the stationary properties of compact stars. In particular, the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of the same mass, implying that they provide an excellent fit to the recent gravitational wave data GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different star types, in particular those corresponding to absolutely stable quark matter, are finally discussed at some length.
Accreting millisecond X-ray pulsars are known to provide a wealth of physical information during their successive states of outburst and quiescence. Based on the observed spin-up and spin-down rates of these objects it is possible, among other things , to infer the stellar magnetic field strength and test models of accretion disc flow. In this paper we consider the three accreting X-ray pulsars (XTE J1751-305, IGR J00291+5934, and SAX J1808.4-3658) with the best available timing data, and model their observed spin-up rates with the help of a collection of standard torque models that describe a magnetically-threaded accretion disc truncated at the magnetospheric radius. Whilst none of these models are able to explain the observational data, we find that the inclusion of the physically motivated phenomenological parameter $xi$, which controls the uncertainty in the location of the magnetospheric radius, leads to an enhanced disc-integrated accretion torque. These new torque models are compatible with the observed spin-up rates as well as the inferred magnetic fields of these objects provided that $xi approx 0.1-0.5$. Our results are supplemented with a discussion of the relevance of additional physics effects that include the presence of a multipolar magnetic field and general-relativistic gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا