ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable Manifold Reconstruction for Point Cloud Denoising

87   0   0.0 ( 0 )
 نشر من قبل Shitong Luo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D point clouds are often perturbed by noise due to the inherent limitation of acquisition equipments, which obstructs downstream tasks such as surface reconstruction, rendering and so on. Previous works mostly infer the displacement of noisy points from the underlying surface, which however are not designated to recover the surface explicitly and may lead to sub-optimal denoising results. To this end, we propose to learn the underlying manifold of a noisy point cloud from differentiably subsampled points with trivial noise perturbation and their embedded neighborhood feature, aiming to capture intrinsic structures in point clouds. Specifically, we present an autoencoder-like neural network. The encoder learns both local and non-local feature representations of each point, and then samples points with low noise via an adaptive differentiable pooling operation. Afterwards, the decoder infers the underlying manifold by transforming each sampled point along with the embedded feature of its neighborhood to a local surface centered around the point. By resampling on the reconstructed manifold, we obtain a denoised point cloud. Further, we design an unsupervised training loss, so that our network can be trained in either an unsupervised or supervised fashion. Experiments show that our method significantly outperforms state-of-the-art denoising methods under both synthetic noise and real world noise. The code and data are available at https://github.com/luost26/DMRDenoise



قيم البحث

اقرأ أيضاً

112 - Wei Hu , Qianjiang Hu , Zehua Wang 2020
3D dynamic point clouds provide a natural discrete representation of real-world objects or scenes in motion, with a wide range of applications in immersive telepresence, autonomous driving, surveillance, etc. Nevertheless, dynamic point clouds are of ten perturbed by noise due to hardware, software or other causes. While a plethora of methods have been proposed for static point cloud denoising, few efforts are made for the denoising of dynamic point clouds, which is quite challenging due to the irregular sampling patterns both spatially and temporally. In this paper, we represent dynamic point clouds naturally on spatial-temporal graphs, and exploit the temporal consistency with respect to the underlying surface (manifold). In particular, we define a manifold-to-manifold distance and its discrete counterpart on graphs to measure the variation-based intrinsic distance between surface patches in the temporal domain, provided that graph operators are discrete counterparts of functionals on Riemannian manifolds. Then, we construct the spatial-temporal graph connectivity between corresponding surface patches based on the temporal distance and between points in adjacent patches in the spatial domain. Leveraging the initial graph representation, we formulate dynamic point cloud denoising as the joint optimization of the desired point cloud and underlying graph representation, regularized by both spatial smoothness and temporal consistency. We reformulate the optimization and present an efficient algorithm. Experimental results show that the proposed method significantly outperforms independent denoising of each frame from state-of-the-art static point cloud denoising approaches, on both Gaussian noise and simulated LiDAR noise.
Surface reconstruction from an unorganized point cloud is an important problem due to its widespread applications. White noise, possibly clustered outliers, and noisy perturbation may be generated when a point cloud is sampled from a surface. Most ex isting methods handle limited amount of noise. We develop a method to denoise a point cloud so that the users can run their surface reconstruction codes or perform other analyses afterwards. Our experiments demonstrate that our method is computationally efficient and it has significantly better noise handling ability than several existing surface reconstruction codes.
90 - Shitong Luo , Wei Hu 2021
Point clouds acquired from scanning devices are often perturbed by noise, which affects downstream tasks such as surface reconstruction and analysis. The distribution of a noisy point cloud can be viewed as the distribution of a set of noise-free sam ples $p(x)$ convolved with some noise model $n$, leading to $(p * n)(x)$ whose mode is the underlying clean surface. To denoise a noisy point cloud, we propose to increase the log-likelihood of each point from $p * n$ via gradient ascent -- iteratively updating each points position. Since $p * n$ is unknown at test-time, and we only need the score (i.e., the gradient of the log-probability function) to perform gradient ascent, we propose a neural network architecture to estimate the score of $p * n$ given only noisy point clouds as input. We derive objective functions for training the network and develop a denoising algorithm leveraging on the estimated scores. Experiments demonstrate that the proposed model outperforms state-of-the-art methods under a variety of noise models, and shows the potential to be applied in other tasks such as point cloud upsampling. The code is available at url{https://github.com/luost26/score-denoise}.
Exploiting convolutional neural networks for point cloud processing is quite challenging, due to the inherent irregular distribution and discrete shape representation of point clouds. To address these problems, many handcrafted convolution variants h ave sprung up in recent years. Though with elaborate design, these variants could be far from optimal in sufficiently capturing diverse shapes formed by discrete points. In this paper, we propose PointSeaConv, i.e., a novel differential convolution search paradigm on point clouds. It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling. We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error. As a result, PointSeaNet, a deep network that is sufficient to capture geometric shapes at both convolution level and architecture level, can be searched out for point cloud processing. Extensive experiments strongly evidence that our proposed PointSeaNet surpasses current handcrafted deep models on challenging benchmarks across multiple tasks with remarkable margins.
3D point cloud - a new signal representation of volumetric objects - is a discrete collection of triples marking exterior object surface locations in 3D space. Conventional imperfect acquisition processes of 3D point cloud - e.g., stereo-matching fro m multiple viewpoint images or depth data acquired directly from active light sensors - imply non-negligible noise in the data. In this paper, we adopt a previously proposed low-dimensional manifold model for the surface patches in the point cloud and seek self-similar patches to denoise them simultaneously using the patch manifold prior. Due to discrete observations of the patches on the manifold, we approximate the manifold dimension computation defined in the continuous domain with a patch-based graph Laplacian regularizer and propose a new discrete patch distance measure to quantify the similarity between two same-sized surface patches for graph construction that is robust to noise. We show that our graph Laplacian regularizer has a natural graph spectral interpretation, and has desirable numerical stability properties via eigenanalysis. Extensive simulation results show that our proposed denoising scheme can outperform state-of-the-art methods in objective metrics and can better preserve visually salient structural features like edges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا