ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Na in WASP-21bs lower and upper atmosphere

317   0   0.0 ( 0 )
 نشر من قبل Guo Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical transmission spectroscopy provides crucial constraints on the reference pressure levels and scattering properties for hot Jupiter atmospheres. For certain planets, where alkali atoms are detected in the atmosphere, their line profiles could serve as a good probe to link upper and lower atmospheric layers. WASP-21b is a Saturn-mass hot Jupiter orbiting a thick disc star, with a low density and an equilibrium temperature of 1333 K, which makes it a good target for transmission spectroscopy. Here, we present a low-resolution transmission spectrum for WASP-21b based in one transit observed by the OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias (GTC), and a high-resolution transmission spectrum based in three transits observed by HARPS-N at Telescopio Nazinale Galileo (TNG) and HARPS at the ESO 3.6 m telescope. We performed spectral retrieval analysis on GTCs low-resolution transmission spectrum and report the detection of Na at a confidence level of $>$3.5-$sigma$. The Na line exhibits a broad line profile that can be attributed to pressure broadening, indicating a mostly clear planetary atmosphere. The spectrum shows a tentative excess absorption at the K D$_1$ line. Using HARPS-N and HARPS, we spectrally resolved the Na doublet transmission spectrum. An excess absorption at the Na doublet is detected during the transit, and shows a radial velocity shift consistent with the planet orbital motion. We proposed a metric to quantitatively distinguish hot Jupiters with relatively clear atmospheres from others, and WASP-21b has the largest metric value among all the characterized hot Jupiters. The detection of Na at both lower and upper atmosphere of WASP-21b reveals that it is an ideal target for future follow-up observations, providing the opportunity to understand the nature of its atmosphere across a wide range of pressure levels.

قيم البحث

اقرأ أيضاً

We present new observations of the transmission spectrum of the hot Jupiter WASP-6b both from the ground with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) from 0.45-0.83 $mu$m, and space with the Transiting Exoplanet Survey S atellite (TESS) from 0.6-1.0 $mu$m and the Hubble Space Telescope (HST) Wide Field Camera 3 from 1.12-1.65 $mu$m. Archival data from the HST Space Telescope Imaging Spectrograph (STIS) and Spitzer is also reanalysed on a common Gaussian process framework, of which the STIS data show a good overall agreement with the overlapping FORS2 data. We also explore the effects of stellar heterogeneity on our observations and its resulting implications towards determining the atmospheric characteristics of WASP-6b. Independent of our assumptions for the level of stellar heterogeneity we detect Na I, K I and H$_2$O absorption features and constrain the elemental oxygen abundance to a value of [O/H] $simeq -0.9pm0.3$ relative to solar. In contrast, we find that the stellar heterogeneity correction can have significant effects on the retrieved distributions of the [Na/H] and [K/H] abundances, primarily through its degeneracy with the sloping optical opacity of scattering haze species within the atmosphere. Our results also show that despite this presence of haze, WASP-6b remains a favourable object for future atmospheric characterisation with upcoming missions such as the James Webb Space Telescope.
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411-810nm. The transit depth is measured with a typical precis ion of 240 parts per million (ppm) in wavelength bins of 10nm on a V = 12.1 magnitude star. We detect the sodium absorption feature (3.2-sigma) and find evidence for potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, strengthening the interpretation of WASP-39b having a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, obtaining HST-quality light curves from the ground.
Observations of ultra-hot Jupiters indicate the existence of thermal inversion in their atmospheres with day-side temperatures greater than 2200 K. Various physical mechanisms such as non-local thermal equilibrium, cloud formation, disequilibrium che mistry, ionisation, hydrodynamic waves and associated energy, have been omitted in previous spectral retrievals while they play an important role on the thermal structure of their upper atmospheres.We aim at exploring the atmospheric properties of WASP-19b to understand its largely featureless thermal spectra using a state-of-the-art atmosphere code that includes a detailed treatment of the most important physical and chemical processes at play in such atmospheres.We used the one-dimensional line-by-line radiative transfer code PHOENIX in its spherical symmetry configuration including the BT-Settl cloud model and C/O disequilibrium chemistry to analyse the observed thermal spectrum of WASP-19b. Results. We find evidence for a thermal inversion in the day-side atmosphere of the highly irradiated ultra-hot Jupiter WASP-19b with Teq ~ 2700 K. At these high temperatures we find that H2O dissociates thermally at pressure below 10^-2 bar. The inverted temperature-pressure profiles of WASP-19b show the evidence of CO emission features at 4.5 micron in its secondary eclipse spectra.We find that the atmosphere ofWASP-19b is thermally inverted.We infer that the thermal inversion is due to the strong impinging radiation. We show that H2O is partially dissociated in the upper atmosphere above about tau = 10^-2, but is still a significant contributor to the infrared-opacity, dominated by CO. The high-temperature and low-density conditions cause H2O to have a flatter opacity profile than in non-irradiated brown dwarfs.Altogether these factors makes H2O more difficult to identify in WASP-19b.
79 - G. Chen , E. Palle , L. Welbanks 2018
Exoplanets with relatively clear atmospheres are prime targets for detailed studies of chemical compositions and abundances in their atmospheres. Alkali metals have long been suggested to exhibit broad wings due to pressure broadening, but most of th e alkali detections only show very narrow absorption cores, probably because of the presence of clouds. We report the strong detection of the pressure-broadened spectral profiles of Na, K, and Li absorption in the atmosphere of the super-Neptune WASP-127b, at 4.1$sigma$, 5.0$sigma$, and 3.4$sigma$, respectively. We performed a spectral retrieval modeling on the high-quality optical transmission spectrum newly acquired with the 10.4 m Gran Telescopio Canarias (GTC), in combination with the re-analyzed optical transmission spectrum obtained with the 2.5 m Nordic Optical Telescope (NOT). By assuming a patchy cloudy model, we retrieved the abundances of Na, K, and Li, which are super-solar at 3.7$sigma$ for K and 5.1$sigma$ for Li (and only 1.8$sigma$ for Na). We constrained the presence of haze coverage to be around 52%. We also found a hint of water absorption, but cannot constrain it with the global retrieval owing to larger uncertainties in the probed wavelengths. WASP-127b will be extremely valuable for atmospheric characterization in the era of James Webb Space Telescope.
Plutos icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the arrival of the New Horizons mission in 2015.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا